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Eventually dendric shift spaces

Francesco Dolce∗and Dominique Perrin†

April 2, 2020

Abstract

We define a new class of shift spaces which contains a number of classes
of interest, like Sturmian shifts used in discrete geometry. We show that
this class is closed under two natural transformations. The first one is
called conjugacy and is obtained by sliding block coding. The second one
is called the complete bifix decoding, and typically includes codings by
non overlapping blocks of fixed length.

1 Introduction

Shift spaces are the sets of two-sided infinite words avoiding the words of a
given language F denoted XF . In this way the traditional hierarchy of classes
of languages translates into a hierarchy of shift spaces. The shift space XF is
called of finite type when one starts with a finite language F and sofic when one
starts with a regular language F .

There is a natural equivalence between shift spaces called conjugacy. Two
shift spaces are conjugate if there is a sliding block coding sending bijectively
one upon the other (in this case the inverse map has the same form). Many basic
questions are still open concerning conjugacy. For example, it is surprisingly
not known whether the conjugacy of shifts of finite type is decidable.

The complexity of a shift space X is the function n 7→ p(n) where p(n) is the
number of admissible blocks of length n in X. The complexities of conjugate
shifts of linear complexity have the same growth rate (see [19, Corollary 5.1.15]).

In this paper, we are interested in shift spaces of at most linear complexity.
This class is important for many reasons and includes the class of Sturmian
shifts which are by definition those of complexity n + 1, which play a role as
binary codings of discrete lines. Several books are devoted to the study of such
shifts (see [19] or [21] for example). We define a new class of shifts of at most
linear complexity, called eventually dendric, extends the class of dendric shifts
introduced in [5] (under the name of tree sets given to their language) which
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themselves extend naturally strict episturmian shifts (also called Arnoux-Rauzy
shifts [1]) and interval exchange shifts.

Our first main result is that this class is closed under conjugacy. We also
prove that it is closed under a second transformation, namely complete bifix
decoding, which is important because it includes coding by non overlapping
blocks of fixed length. These two results show the robustness of the class of
eventually dendric shifts, giving a strong motivation for its introduction.

Recently, Michael Damron and Jon Fickenscher have studied a class of re-
current shifts satisfying a condition called the regular bispecial condition. They
proved that the number of ergodic measures on such shifts is bounded by
(K + 1)/2, where K is the limiting value of the differences p(n + 1) − p(n)
and p is the complexity [11]. We will see that these shifts are precisely the
recurrent eventually dendric shifts.

The class of dendric shifts (defined below) is known to be closed under
complete bifix decoding (see [7]) but it is not closed under conjugacy. This fact
was the initial motivation for introducing eventually dendric shifts, following a
suggestion of Fabien Durand.

We now describe the results in some more detail.
A dendric shift X is defined by introducing the extension graph of a word

in the language L(X) of X and by requiring that this graph is a tree for every
word in L(X). It has many interesting properties which involve free groups. In
particular, in a dendric shift X on the alphabet A, the group generated by the
set of return words to some word in L(X) is the free group on the alphabet and,
in particular, has CardA free generators. This generalizes a property known for
Sturmian shifts whose link with automorphisms of the free group was noted by
Arnoux and Rauzy.

The class of eventually dendric shifts, introduced in this paper, is defined by
the property that the extension graph of every word w in the language of the
shift is a tree for every long enough word w.

Our main results are that the class of eventually dendric shifts is closed
under

• conjugacy (Theorem 6.1), and

• complete bifix decoding (Theorem 9.2).

The paper is organized as follows. In the first section, we introduce the
definition of the extension graph and of an eventually dendric shift. In Section 3,
we recall some mostly known properties on the complexity of a shift and of
special words. We prove a result which characterizes eventually dendric shifts by
the extension properties of special words (Proposition 3.5). In Section 4, we use
the classical notion of asymptotic equivalence to give a second characterization
of eventually dendric shifts (Theorem 4.6). In Section 5, we introduce the notion
of a simple tree and we prove that for an eventually dendric shift, the extension
graph of every long enough word is a simple tree (Proposition 5.1), a property
which holds trivially for every word in a Sturmian shift. In Section 6 we prove
the first of our main results (Theorem 6.1).
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In the next section (Section 7), we prove additional properties of eventually
dendric shifts. We first prove that the cardinality of sets of return words is
eventually constant (Theorem 7.3). Next, we prove that eventually dendric
shifts are minimal as soon as they are irreducible (Theorem 7.6), a property
already known for dendric shifts [13]..

In Section 8 we introduce generalized extension graphs in which extension
by words of fixed length replace extension by letters. We prove that one ob-
tains an equivalent definition of eventually dendric shifts using these generalized
extension graphs (Theorem 8.4).

Finally, in Section 9, we prove that the class of eventually dendric shifts is
closed under complete bifix decoding, a result already known for dendric shifts.

Preliminary versions of the results of this paper have been presented at the
conferences CSR 2019 [14] and WORDS 2019 [15].

Acknowledgements We thank Valérie Berthé, Paulina Cecchi, Fabien Du-
rand and Samuel Petite for useful conversations on this subject and especially
Fabien Durand which suggested to us the statement of Theorem 6.1. We also
thank Jon Fickenscher for useful conversations. This research received fund-
ing from the Ministry of Education, Youth and Sports of the Czech Republic
through the project no. CZ.02.1.01/0.0/0.0/16019/0000778.

2 Eventually dendric shifts

Let A be a finite alphabet. We consider the set AZ of bi-infinite words on A as
a topological space for the product topology. The shift map σA : AZ → AZ is
defined by y = σA(x) if yi = xi+1 for every i ∈ Z. It is a one-to-one continuous
map.

We also consider the topological space AN of one-sided infinite words. We
still denote by σA the map from AN to AN defined by σA(x) = y if yi = xi+1

for all i ∈ N. Note that σA is not one-to-one as soon as Card(A) ≥ 2.
A shift space on the alphabet A is a subset X of the set AZ which is closed

and invariant under the shift, that is such that σA(X) = X (for more on shift
spaces see, for instance, [19]).

We denote by A∗ the set of (finite) words on the alphabet A. A subset of
A∗ is called a language on A. A word w ∈ A∗ is a factor of a bi-infinite word
x ∈ AZ if w = xi · · ·xi+n−1 for some i ∈ Z.

We denote by L(X) the language of X, which is the set of finite factors of
the elements of X. A language L on the alphabet A is the language of a shift
if and only if it is factorial (that is contains the factors of its elements) and
extendable (that is for any w ∈ L there are letters a, b ∈ A such that awb ∈ L).

For n ≥ 0 we denote

Ln(X) = L(X) ∩An

L≥n(X) = ∪m≥nLm(X).
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For w ∈ L(X) and n ≥ 1, we denote

Ln(w,X) = {u ∈ Ln(X) | uw ∈ L(X)}
Rn(w,X) = {v ∈ Ln(X) | wv ∈ L(X)}
En(w,X) = {(u, v) ∈ Ln(w,X)×Rn(w,X) | uwv ∈ L(X)}

The extension graph of order n of w, denoted En(w,X), is the undirected
bipartite graph whose set of vertices is the disjoint union of Ln(w,X) and
Rn(w,X) and whose edges are the elements of En(w,X).

When the context is clear, we denote Ln(w), Rn(w), En(w) and En(w) in-
stead of Ln(w,X), Rn(w,X), En(w,X) and En(w,X).

A path in an undirected graph is reduced if it does not contain successive
equal edges (such a path is also called simple). For any w ∈ L(X), since any
vertex of Ln(w) is connected to at least one vertex of Rn(w), the bipartite graph
En(w) is a tree if and only if there is a unique reduced path between every pair
of vertices of Ln(w) (resp. Rn(w)).

The shift X is said to be eventually dendric with threshold m ≥ 0 if E1(w)
is a tree for every word w ∈ L≥m(X). It is said to be dendric if we can choose
m = 0. Thus, a shift X is dendric if and only if E1(w) is a tree for every word
w ∈ L(X).

The languages of dendric shifts were introduced in [5] under the name of tree
sets. An important example of dendric shifts is formed by strict episturmian
shifts (also called Arnoux-Rauzy shifts), which are by definition such that L(X)
is closed by reversal and such that for every n there exists a unique wn ∈ Ln(X)
such that Card(R1(wn)) = Card(A) and such that for every w ∈ Ln(X) \ {wn}
one has Card(R1(w)) = 1 (see [5]).

Example 2.1 LetX be the Fibonacci shift, which is generated by the morphism
a 7→ ab, b 7→ a. It is well known that it is a Sturmian shift (see [19]). The graph
E1(a) is shown in Figure 1 on the left. The graph E3(a) is shown on the right.

a

b

a

b

aba

aab

bab

bab

baa

aba

Figure 1: The graphs E1(a) and E3(a).

The tree sets of characteristic c ≥ 1 introduced in [4, 13] give an example of
eventually dendric shifts. The language L(X) of a shift space X is said to be a
tree sets of characteristic c if for any w ∈ L≥1(X), the extension graph E1(w)
is a tree and if E1(ε) is a disjoint union of c trees.
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Example 2.2 Let X be the shift generated by the morphism a 7→ ab, b 7→
cda, c 7→ cd, d 7→ abc. Its language is a tree set of characteristic 2 ([4, Example
4.2]) and it is actually a specular set. The extension graph E1(ε) is shown in
Figure 2.

a

b

b

c

c

d

d

a

Figure 2: The extension graph E1(ε).

Since the extension graphs of all nonempty words are trees, the shift space
is eventually dendric with threshold 1.

Example 2.3 Let S be the Tribonacci set, which is the set of factors of the
fixed point of the morphism ψ : a 7→ ab, b 7→ ac, c 7→ a. S is an Arnoux-Rauzy
set and a dendric set (see [5]).

3 Complexity of shift spaces

Let X be a shift space. For a word w ∈ L(X) and k ≥ 1, we denote

`k(w) = Card(Lk(w)), rk(w) = Card(Rk(w)), ek(w) = Card(Ek(w)).

For any w ∈ L(X), we have 1 ≤ `k(w), rk(w) ≤ ek(w). The word w is left-k-
special if `k(w) > 1, right-k-special if rk(w) > 1 and k-bispecial if it is both
left-k-special and right-k-special. For k = 1, we use `, e, r instead of `1, e1, r1
and we simply say special instead of k-special.

We define the multiplicity of w as (see [9])

m(w) = e(w)− `(w)− r(w) + 1.

We say that w is strong if m(w) > 0, weak if m(w) < 0 and neutral if m(w) = 0.
It is clear that

1. if E1(w) is acyclic, then w is weak or neutral,

2. if E1(w) is connected, then w is strong or neutral,

3. if E1(w) is a tree, then w is neutral.

Proposition 3.1 Let X be a shift space and let w ∈ L(X). If w is neutral,
then

`(w)− 1 =
∑

b∈R1(w)

(`(wb)− 1) (3.1)
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Proof. Since w is neutral, we have e(w) = `(w) + r(w)− 1. Thus∑
b∈R1(w)

(`(wb)− 1) = e(w)− r(w)

= `(w)− 1.

Note that the symmetrical of Proposition 3.1 also holds: if w ∈ L(X) is neutral
then

r(w)− 1 =
∑

b∈L1(w)

(r(bw)− 1) .

Set further

pn(X) = Card(Ln(X)),

sn(X) = pn+1(X)− pn(X),

bn(X) = sn+1(X)− sn(X).

The sequence pn(X) is called the complexity of the shift space X.
The following result is from [8] (see also [5, Lemma 2.12] and [9, Theorem

4.5.4] ). We include a proof for convenience.

Proposition 3.2 We have for all n ≥ 0,

sn(X) =
∑

w∈Ln(X)

(`(w)− 1) =
∑

w∈Ln(X)

(r(w)− 1) (3.2)

and
bn(X) =

∑
w∈Ln(X)

m(w). (3.3)

In particular, the number of left-special (resp. right-special) words of length n
is bounded by sn(X).

Proof. We have∑
w∈Ln(X)

(`(w)− 1) =
∑

w∈Ln(X)

`(w)− Card(Ln(X))

= Card(Ln+1(X))− Card(Ln(X)) = pn+1 − pn
= sn(X)

with the same result for
∑

w∈Ln(X)(r(w)− 1). N∑
w∈Ln(X)

m(w) =
∑

w∈Ln(X)

(e(w)− `(w)− r(w) + 1)

= pn+2(X)− 2pn+1(X) + pn(X) = sn+1(X)− sn(X) = bn(X).

We will use the following easy consequence of Proposition 3.2.
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Proposition 3.3 Let X be a shift space. If X is eventually dendric, then the
sequence sn(X) is eventually constant.

Proof. Let n ≥ 1 be such that the extension graph of every word in L≥n(X) is
a tree. Then bm(X) = 0 for every m ≥ n. Thus sm(X) = sm+1(X) for every
m ≥ n, whence our conclusion.

The previous result implies that eventually dendric sets have eventual linear
complexity.

The converse of Proposition 3.3 is not true, as shown by the following ex-
ample.

Example 3.4 Let X be the Chacon ternary shift, which is the substitutive
shift space generated by the morphism ϕ : a 7→ aabc, b 7→ bc, c 7→ abc. It is well
known that the complexity of X is pn(X) = 2n+ 1 and thus that sn = 2 for all
n ≥ 0 (see [19, Section 5.5.2]). The extension graphs of abc and bca are shown
in Figure 3.

a

c

a

b

a

c

a

b

Figure 3: The extension graphs of abc and bca.

Thus m(abc) = 1 and m(bca) = −1. Let now α be the map on words defined
by α(x) = abcϕ(x). Let us verify that if the extension graph of x is the graph
of Figure 3 on the left, the same holds for the extension graph of y = α(x).
Indeed, since axa ∈ L(X), the word ϕ(axa) = aabcϕ(x)aabc = ayaabc is also in
L(X) and thus (a, a) ∈ E1(y). Since cxa ∈ L(X) and since a letter c is always
preceded by a letter b, we have bcxa ∈ L(X). Thus ϕ(bcxa) = bcyaabc ∈ L(X)
and thus (c, a) ∈ E1(y). The proof of the other cases is similar. The same
property holds for a word x with the extension graph on the right of Figure 3.
This shows that there is an infinity of words whose extension graph is not a tree
and thus the Chacon set is not eventually dendric.

Let X be a shift space. We define LSn(X) (resp. LS≥n(X)) as the set of
left-special words of L(X) of length n (resp. at least n). We denote LS(X) =
∪n≥1LSn(X).

The following result expresses the fact that eventually dendric shift spaces
are characterized by an asymptotic property of left-special words which is a
local version of the property defining Sturmian shift spaces.

Proposition 3.5 A shift space X is eventually dendric if and only if there is an
integer n ≥ 0 such that any word w of LS≥n(X) has exactly one right extension
wb ∈ LS≥n+1(X) with b ∈ A. Moreover, in this case, one has `(wb) = `(w).
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Proof. Assume first that X is eventually dendric with threshold m. Then any
word w in LS≥m(X) has at least one right extension in LS(X). Indeed, since
R1(w) has at least two elements and since the graph E1(w) is connected, there
is at least one element of R1(w) which is connected by an edge to more than
one element of R1(w).

Next, Equation (3.1) shows that for any w ∈ LS≥m(X) which has more than
one right extension in LS(X), one has `(wb) < `(w) for each such extension.
Thus the number of words in LS≥m(X) which are prefix of one another, and
which have more than one right extension, is bounded by Card(A). This proves
that there exists an n ≥ m such that for any w ∈ L≥n(X) there is exactly
one b ∈ A for which wb ∈ LS(X). Moreover, one has then `(wb) = `(w) by
Equation (3.1).

Conversely, assume that the condition is satisfied for some integer n. For
any word w in L≥n(X), the graph E1(w) is acyclic since all vertices in R1(w)
except at most one have degree 1. Thus w is weak. Let N be the length of
w. Then for every word u of length N and every b ∈ R1(u), one has `(ub) = 1
except for one letter b such that `(ub) = `(u). Thus, by Proposition 3.2,

sN (X) =
∑

u∈LN (X)

(`(u)− 1) =
∑

v∈LN+1(X)

(`(v)− 1) = sN+1(X).

This shows that bN = 0 for every N ≥ n and thus, by Proposition 3.2 again, all
words in L≥n(X) are neutral. Since all graphs E1(w) are moreover acyclic, this
forces that these graphs are trees and thus that X is eventually dendric with
threshold n.

A symmetric result on left extensions of right -pecial words also holds.
In [11], a bispecial word is called regular if it has only one left extension wich

is right-special and only one right extension which is left-special. A shift space
is said to satisfy the regular bispecial condition (RBC ) if every long enough
bispecial word is regular. The following statement is a direct consequence of
Proposition 3.5.

Corollary 3.6 A shift space satisfies the regular bispecial condition if and only
if it is eventually dendric.

We give below an example of a shift space which is shown to be eventually
dendric using Proposition 3.5.

Example 3.7 Let X be the Tribonacci shift, which is the strict episturmian
shift space generated by the substitution ϕ : a 7→ ab, b 7→ ac, c 7→ a and let α
be the morphism α : a 7→ a, b 7→ a, c 7→ c. Let ϕω(a) be the right infinite word
having all ϕn(a) for n ≥ 1 as prefixes. The left-special words for X are the
prefixes of ϕω(a). Indeed, it is easy to verify that if w is left-special, then ϕ(w)
is also left-special.

Note that the set L(X) ∩ c{a, b}∗c is

{cabac, cabaabac, cababac}.
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Since these three words are of distinct lengths, it follows that the restriction of
α to the set L(X) ∩ c{a, b}∗c is injective.

Next we claim that the left-special words for α(X) containing a letter c are
the prefixes of α(ϕω(a)) or aaα(ϕω(a)) containing a letter c. Indeed, if w is a
prefix of ϕω(a), we have L1(w,X) = {a, b, c} and thus L1(α(w), α(X)) = {a, c}
showing that α(w) is left-special. Next, L3(w,X) = {aba, bac, cab} and thus
L1(aaα(w), α(X)) = {a, c} showing t hat aaα(w) is left-special. Conversely,
assume that u is left-special for α(X) and contains a c. Since u is a prefix
of a word ending with c, we may assume that u ends with c. Set u = ajcvc
with j ≥ 0. By a previous remark, there is a unique word s ∈ L(X) such that
csc ∈ L(X) and α(csc) = cvc. Since every word in L(X) of length at least 7
contains a c, we have j ≤ 6. It is easy to verify by inspection of the possible
left extensions of c in L(X) that u is left-special only when j = 3 or j = 5 (see
Figure 4).

· · · caba

· · · cab

· · · abc

abac

· · · ca aa

· · · c

· · · aac

aaac

Figure 4: The possible left extensions of c in L(X) and in α(L(X)).

If j = 3, then u = α(w) where w = abacsc is left-special in L(X) and thus
is a prefix of ϕω(a). If j = 5, then u is the common image by α of ababacsc and
baabacsc. Then w = abacsc is left-special in X and thus is a prefix of ϕω(a).
Since u = aaα(w), the claim is proved.

It follows from the claim that the shift space α(X) satisfies the condition
of Proposition 3.5 with n = 4. Thus we conclude that α(X) is dendric with
threshold at most 4. The threshold is actually 4 since a3 has multiplicity 1 in
α(X).

4 Asymptotic equivalence

The orbit of x ∈ AZ is the equivalence class of x under the action of the shift
transformation. Thus y is in the orbit of x if there is an n ∈ Z such that
x = σn

A(y). We say that x is a shift of y if they belong to the same orbit.
For x ∈ AZ, denote

x− = · · ·x−2x−1 and x+ = x0x1 · · ·

and x = x− ·x+. When X is a shift space, we denote X+ the set of right infinite
words u such that u = x+ for some x ∈ X.

A right infinite word u ∈ AN is a tail of the two-sided infinite word x ∈ AZ

if u = y+ for some shift y of x, that is u = xnxn+1 · · · for some n ∈ Z.
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Let X be a shift space on the alphabet A. The right asymptotic equivalence
is the equivalence on X defined as follows. Two elements x, y of X are right
asymptotically equivalent if there exists two shifts x′, y′ of x, y such that x′+ =
y′+. In other words, x, y are right asymptotic equivalent if they have a common
tail (see Figure 5 where we assume x = x′ and y = y′).

x−

y−
x+ = y+

Figure 5: Two right asymptotic sequences x, y.

The classes of the right asymptotic equivalence not coinciding with only
one orbit are called right asymptotic classes (they are called in [16] asymptotic
components).

Example 4.1 The Fibonacci shift X has one only right asymptotic class. It is
formed of the shifts of the two elements x, y ∈ X such that x+ = y+ = ϕω(a)
where ϕω(a) is the Fibonacci word, that is the right infinite word having all
ϕn(a) for n ≥ 1 as prefixes. Indeed, let x, y ∈ X be such that x+ = y+ with
x 6= y. Then all finite prefixes of x+ = y+ are left-special and thus are prefixes
of ϕω(a) (see, for instance, [19]). Thus x+ = y+ = ϕω(a).

If C is a right asymptotic class, it is, by the definition of asymptotic equiva-
lence, a union of orbits. The following result is proved in [16, Lemma 3.2] under
a weaker hypothesis that we shall not need here. We give a proof for the sake
of completeness.

Proposition 4.2 Let X be a shift space such that the sequence sn(X) is bounded
by k. Then the number of right asymptotic classes is finite and at most equal to
k.

Proof. Let (x1, y1), . . . , (x`, y`) be ` pairs of distinct elements of X belonging
to asymptotic classes C1, . . . , C` such that for all 1 ≤ i ≤ `, one has x+i = y+i
and (xi)−1 6= (yi)−1. For n large enough the prefixes of length n of the x+i are
` distinct left-special words and thus ` ≤ sn(X) since by Proposition 3.2 the
number of left-special words is bounded by sn(X). This shows that the number
of right asymptotic classes is finite and bounded by k.

Let X be a shift space. For an asymptotic class C of X, we denote ω(C) =
Card(o(C))−1 where o(C) is the set of orbits contained in C. For a right infinite
word u ∈ X+, let

`C(u) = Card{a ∈ A | x+ = au for some x ∈ C}.

We denote by LSω(C) the set of right infinite words u such that `C(u) ≥ 2.
The following statement can be seen as an infinite counterpart of Proposi-

tion 3.2.
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Proposition 4.3 Let X be a shift space and let C be a right asymptotic class.
Then

ω(C) =
∑

u∈LSω(C)

(`C(u)− 1) (4.1)

where both sides are simultaneously finite.

In order to prove Proposition 4.3, we use the notion of a cluster of trees that
we now define.

A cluster of trees is a directed graph which is the union of a (non-trivial)
cycle Γ and a family of disjoint trees (oriented from child to father) Tv with root
v indexed by the vertices v on Γ (see Figure 6). It is easy to verify that a finite
connected graph is a cluster of trees if and only if every vertex has outdegree 1
and there is a unique strongly connected component.

Figure 6: A cluster of trees.

In a cluster of trees, the number of leaves (that is, the leaves of the trees
Tv not reduced to their root) is equal to

∑
u(d−(u) − 1), where d− stands for

the indegree function and the sum runs over the set of internal nodes. Indeed,
this is true for one cycle alone since there are no leaves and every internal node
has indegree 1. The formula remains valid when suppressing a leaf in one of the
trees not reduced to its root.
Proof of Proposition 4.3. We first suppose that C does not contain periodic
points which implies that LSω(C) does not contain periodic points either.

It is easy to verify that if u, v ∈ LSω(C), there exist n,m ≥ 0 such that
σn(u) = σm(v).

We build a graph T (C) as follows. The set of vertices of T (C) is o(C) ∪
LSω(C). There will be for each vertex u of T (C) at most one edge going out of
u, called its father.

Let first x ∈ C and let u be the orbit of x. There is, up to a shift of x, at
least one y ∈ C with x 6= y such that y+ = x+. Let n ≥ 0 be the minimal
integer such that x−n 6= y−n. Then v = σ−n+1(x)+ is in LSω(C) and depends
only on the orbit u of x. We choose the vertex v as the father of u.

Next, for every u ∈ LSω(C), we consider the minimal integer, if it exists,
such that v = σn(u) is in LSω(C). Then we choose v as the father of u.

Assume now that ω(C) is finite. Then LSω(C) is also finite and T (C) is
a finite tree. Indeed, if u ∈ LSω(C), there is at least one x ∈ C such that

11



x+ = u and thus such that u is an ancestor of the orbit of x. By the claim made
above, any two elements of LSω(C) have a common ancester. Since C does not
contain periodic points, two vertices cannot be ancestors of one another. Thus
there is a unique element of LSω(C) which has no father, namely the unique
u ∈ SL(C) with a maximal number of elements of o(C) as descendants. Since
it is an ancestor of all vertices of T (C), this shows that T (C) is a finite tree.

Formula (4.1) now follows from the fact that in any finite tree with n leaves
and and a set V of internal vertices, one has n− 1 =

∑
v∈V (d−(v)− 1).

Assume next that the right hand side of Equation (4.1) is finite. Then the set
LSω(C) is finite and thus T (C) is again a tree with a finite number of internal
nodes. Since the degree of each node is finite, it implies that it has also a finite
number of leaves. Thus ω(C) is finite and Equation (4.1) also holds.

Finally, assume that C contains a periodic point. It follows from the defini-
tion of an asymptotic class that there is exactly one such periodic orbit, since
two periodic points having a common tail are in the same orbit.

The proof follows the same lines as in the first case, but this time T (C) will
be a cluster of trees instead of a tree.

The set of leaves of T (C) is, as above, the set o(C) of non periodic orbits
and the the other vertices are the elements of LSω(C). The unique father of
a vertex is defined in the same way as above. The fact that there is a unique
strongly connected component is a consequence of the fact that there is a unique
periodic orbit in C. Finally, Formula (4.1) holds with since the number of leaves
is equal to

∑
(d−(u)− 1)− 1, where the sum runs over the set of internal nodes

and the −1 corresponds to the unique periodic orbit.

Example 4.4 Consider again the image α(X) of the Tribonacci shift by the
morphism α : a 7→ a, b 7→ a, c 7→ c (Example 3.7).

x

y

z

y

z
aax+

x
x+

Figure 7: The asymptotic class C and the tree T (C).

There is one asymptotic class C made of three orbits represented in Figure 7
on the left. The class is formed of the orbits of x, y, z where x+ = α(ϕω(a)) and
y+ = z+ = aax+. The tree T (C) is shown on the right.

In the next example we use the notation uω for the right infinite word uuu · · ·
and symmetrically ωu for the left-infinite word · · ·uuu.

Example 4.5 Let X be the shift space which is the closure under the shift of
the set {ωc.(ab)ω ∪ ωd.(ab)ω ∪ ω(ab) · (ab)ω}. The shift has just one right
asymptotic class C, the one associated to the tail (ab)ω, containing three orbits.
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Since the tail (ab)ω can be prolonged on the left by either c, d or b, we have
that Formula 4.1 is verified. The cluster of trees T (C) is represented in Figure 8
where we denote by xy the orbit of x · y.

(ab)ω

(ba)ω

ωc(ba)ω ωd(ba)ω

Figure 8: The cluster T (C).

Let us now deduce from Proposition 3.5 a characterization of eventually
dendric shift spaces in terms of asymptotic classes. For a shift space X, denote

ω(X) =
∑

ω(C)

where the sum is over the asymptotic classes C of X.

Theorem 4.6 A shift space X is eventually dendric if and only if:

1. The sequence sn(X) is eventually constant, and

2. We have lim sn(X) = ω(X).

Proof. Assume first that X is eventually dendric. Then b 1 holds by Proposi-
tion 3.3. To prove assertion 2, consider an integer n large enough so that the
condition of Proposition 3.5 holds (it implies that sm(X) is constant for m ≥ n).
Let us consider an asymptotic class C.

Let π be the map assigning to u ∈ AN its prefix of length n. Then π
maps LSω(C) into LSn(X). The map π is injective since otherwise some word
in LS≥n(X) would have more than one extension on the right, contrary to
Proposition 3.5. Next the sets π(LSω(C)) for all asymptotic classes C form a
partition of LSn(X).

Thus, by Equation (3.2),

sn(X) =
∑

w∈LSn(X)

(`(w)− 1) =
∑
C

∑
u∈LSω(C)

(`C(u)− 1)

=
∑
C

ω(C)

where the last equality follows from Equation (4.1).
Conversely, if the two conditions are satisfied, let n be large enough so that

sm(X) = sn(X) for all m ≥ n. We may also assume that n is large enough so
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that the prefixes of length n of the words of LSω(C) for every asymptotic class C
are distinct. Then, every word w of LSn(X) has exactly one right extension wb
in LSn+1(X). It is moreover such that `(w) = `(wb) and thus X is eventually
dendric by Proposition 3.5.

For example, the Tribonacci shift is such that sn(X) = 2 for every n ≥ 0 and
ω(X) = 2 since there is only one asymptotic class made of 3 orbits. Note that
the Chacon shift X (Example 3.4) satisfies condition 1 of Theorem 4.6 but not
condition 2. Indeed, one can verify that sn(X) = 2 for all n ≥ 0 but ω(X) = 1.

5 Simple trees

The diameter of a tree is the maximal length of simple paths. We call a tree
simple if its diameter is at most 3. Note that if the simple tree is the extension
graph En(w) in some shift space X of a bispecial word w, then the diameter of
En(w) is equal to 3 and this happens if and only if any two vertices of En(w)
on the same side (that is, both in Ln(x) or both in Rn(w)) are connected to a
common vertex on the opposite side.

Note that Corollary 3.6 expresses the fact that a shift space X is eventually
dendric if and only if for any long enough word w ∈ L(X), the extension graph
E1(w) is a simple tree. However, E1(w) can be a simple tree while Ek(w), for a
k > 1 is not. For example, if X is the Fibonacci shift, then E1(a) is simple while
E3(a) is not (see Example 2.1).

We prove the following additional property of the graphs Ek(w).

Proposition 5.1 Let X be an eventually dendric shift space. For any k ≥ 1
there exists an n ≥ 1 such that Ek(w) is a simple tree for every w ∈ L≥n(X).

We first prove the following lemma.

Lemma 5.2 Let X be an eventually dendric shift space. For every k ≥ 1 there
is an n ≥ 1 such that if p, w ∈ L(X) with |p| ≤ k and |w| ≥ n are such that
pw,w ∈ LS(X), then pw, w have a unique right extension in LS(X) by some
letter b ∈ A which is moreover such that `(pwb) = `(pw) and `(wb) = `(w).

Proof. Consider two asymptotic classes C,D and let u ∈ LSω(C), v ∈ LSω(D).
If C,D are distinct, we cannot have pu = v for some word p. Thus there is an
integer n such that if w is the prefix of length n of u, then pw is not a prefix of
v. Since there is a finite number of words p of length at most k, a finite number
of asymptotic classes (by Proposition 4.2) and since for each such class the set
LSω(C) is finite, we infer that for every k there exists an n such that for every
pair of asymptotic classes C,D and any u ∈ S(C), v ∈ LS(D), if w is a prefix
of u and pw a prefix of v, with |p| ≤ k and |w| = n, then C = D.

Next, assume that w is a prefix of u and pw a prefix of v with u, v ∈ S(C)
for some asymptotic class C. If v 6= pu, then there is a right extension w′ of w
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such that pw′ is not a prefix of v. By contraposition, if n is large enough, we
have v = pu.

We thus choose n large enough so that:

1. All elements of LSω(C) for all asymptotic components C have distinct
prefixes of length n;

2. For every pair of asymptotic classes C,D and any u ∈ LSω(C), v ∈ LS(D),
if w is prefix of u and pw is prefix of v with |p| ≤ k and |w| = n then
C = D and pu = v.

We moreover assume that n is large enough so that the condition of Proposi-
tion 3.5 holds.

Consider p, w with |p| = k and |w| = n such that pw,w are left-special. By
condition 1, there are asymptotic components C,D and elements u ∈ LSω(C)
and v ∈ LS(D) such that w is a prefix of u and pw a prefix of v. Because of
condition 2, we must have σk(v) = u (and in particular C = D). Thus there is
a unique letter b ∈ A such that wb, pwb ∈ LS(X) which is moreover such that
`(wb) = `(w) and `(pwb) = `(pw) by Proposition 3.5.

Proof of Proposition 5.1. We choose n such that Proposition 3.5 and Lemma 5.2
hold.

We prove by induction on ` with 1 ≤ ` ≤ k that E`(w) is a simple tree and
thus that for any p, q ∈ L`(w) there is an r ∈ Rk(w) such that pwr, qwr ∈ L(X).

The property is true for ` = 1. Indeed, set p = a and q = b. Apply
iteratively Proposition 3.5 to obtain letters c1, . . . , ck such that `(wc1 · · · ci) =
`(wc1 · · · cici+1) and set r = c1 · · · ck. Then awr, bwr ∈ L(X).

Assume next that the property is true for `− 1 and consider ap, bq ∈ L`(w)
with a, b ∈ A. Replacing if necessary w by some longer word, we may assume
that p, q end with different letters and thus that w is left-special. By the in-
duction hypothesis, there is a word r ∈ Rk(w) such that pwr, qwr ∈ L(X). By
Lemma 5.2, the first letter of r is the unique letter c such that `(pwc) = `(pw)
and `(qwc) = `(qw). Thus apwc, bqwc ∈ L(X). Applying Lemma 5.2 iteratively
in this way, we obtain that apwr, bqwr ∈ L(X).

6 Conjugacy

Let A,B be two alphabets, and X ⊂ AZ and Y ⊂ BZ be two shift spaces. A
map φ : X → Y is called a sliding block code if there exists m,n ∈ N and a
map f : Lm+n+1(X) → B such that φ(x)i = f(xi−m · · ·xi+n) for all i ∈ Z and
x = (xi) ∈ X. It can be shown that a map φ : X → Y is a sliding block code if
and only if it is continuous and commutes with the shift, that is φ◦σA = σB ◦φ
(see, for instance, [20]).

Two shift spaces X,Y are said to be conjugate when there is a bijective
sliding block code φ : X → Y . The following result shows that the property
of being eventually dendric is a dynamical property, in the sense that it only
depends on the conjugacy class of a shift.
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Theorem 6.1 The class of eventually dendric shift spaces is closed under con-
jugacy.

We first treat the following particular case of conjugacy. Let X be a shift
space on the alphabet A and let k ≥ 1. Let f : Lk(X) → Ak be a bijection
from the set Lk(X) of blocks of length k of X onto an alphabet Ak. The map
γk : X → AZ

k defined for x ∈ X by y = γk(x) if for every n ∈ Z

yn = f(xn · · ·xn+k−1)

is the k-th higher block code on X. The shift space X(k) = γk(X) is called the
k-th higher block shift space of X. It is well known that the k-th higher block
code is a conjugacy.

We extend the bijection f : Lk(X) → Ak to a map still denoted f from
L≥k(X) to L≥1(X(k)) by f(a1a2 · · · an) = f(a1 · · · ak) · · · f(an−k+1 · · · an). Note
that all nonempty elements of L(X(k)) are images by f of elements of L(X),
that is, L(X(k)) = {f(w) | w ∈ L≥k(X)} ∪ {ε}.

Example 6.2 Let X be the Fibonacci shift. We show that the 2-block exten-
sion X(2) of X is eventually dendric with threshold 1. Set A2 = {u, v, w} with
f : aa 7→ u, ab 7→ v, ba 7→ w. Since X is dendric, the graph E1(w) is a tree for
every word w ∈ L(X(2)) of length at least 1 (but not for w = ε). Thus X(2) is
eventually dendric. It is actually a tree shift space of characteristic 2 since the
graph E1(ε) is the union of two trees (see Figure 9).

u

w

v

u

v

w

u

w

u

v

Figure 9: The extension graphs E1(ε) and E1(vw).

Lemma 6.3 For every k ≥ 1, the k-th higher block shift space X(k) is eventually
dendric if and only if X is eventually dendric.

Proof. We define for every w ∈ L≥k(X) a map from E1(w) to E1(f(w)) as
follows.

To every a ∈ L1(w), we associate the first letter λ(a) of f(aw) and to every
b ∈ R1(w), we associate the last letter ρ(b) of f(wb). Then, since f(awb) =
λ(a)f(w)ρ(b), the pair (a, b) is in E1(w) if and only if (λ(a), ρ(b)) is in E1(f(w)).
Thus, the maps λ, ρ define an isomorphism from E1(w) onto E1(f(w)).

Thus we conclude that X is eventually dendric with threshold m if and only
if X(k) is eventually dendric with threshold M with 0 ≤M ≤ max(1,m−k+1).
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Example 6.4 Let X be the Fibonacci shift. For all k ≥ 2, X(k) is an eventually
dendric shift space with threshold 1.

Example 6.5 Let X be the shift space associated to the two-sided infinite word
· · · abab · abab · · · . X is an eventually dendric shift space with threshold 1 (the
empty word has 2 connected components). For every k ≥ 1, the shift space X(k)

is eventually dendric with threshold 1.

A morphism α : A∗ → B∗ is called alphabetic if α(A) ⊂ B.

xk

yk yk+1 · · · yk+ryk−1· · ·yk−r

f

Figure 10: The sliding block code.

Lemma 6.6 Let X be an eventually dendric shift space on the alphabet A and
let α : A∗ → B∗ be an alphabetic morphism which induces a conjugacy from X
onto a shift space Y . Then Y is eventually dendric.

Proof. Since α is invertible, there exists an integer r ≥ 0 and a map f : B2r+1 →
A such that for x = (xk)k∈Z and y = (yk)k∈Z, one has y = α(x) if and only if
for every k ∈ Z, one has (see Figure 10)

xk = f(yk−r · · · yk−1ykyk+1 · · · yk+r).

We extend the definition of f to a map from L≥2r+1(X) to A as follows. For
w = b1−r · · · bn+r ∈ L≥2r+1(Y ), set f(w) = a1 · · · an where ai = f(bi−r · · · bi · · · bi+r).
Note that if u = f(w) and w = svt with s, t ∈ Lr(Y ), then v = α(u) (see Fig-
ure 11).

u

v ts

f

p

p′

q

q′

λ(p) ρ(q)

p

p′

q

q′

λ(p)

λ(p′)

ρ(q)

ρ(q′)

Figure 11: The map f (on the left), the graph Ek(u) (on the center) and the
graph E1(w) (on the right).

Let n be the integer given by Proposition 5.1 for k = r + 1. We claim that
every graph E1(w) for |w| ≥ n + 2r is a tree. Let indeed s, t ∈ Lr(Y ) and
v ∈ L≥n(Y ) be such that w = svt. Let u = f(svt) (see Figure 11).
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Let E′k(u) = {(p, q) ∈ Lk(u)×Rk(u) | α(puq) ∈ BwB} and let L′k(u) (resp.
R′k(u)) be the set of p ∈ Lk(u) (resp. q ∈ Rk(u)) which are connected to
Lk(u) (resp. Rk(u)) by an edge in E′k(u). Let E ′k(u) be the subgraph of Ek(u)
obtained by restriction to the set of vertices which is the disjoint union of L′k(u)
and R′k(u) (and that has, thus, E′k(u) as set of edges.

Claim 1. The graph E ′k(u) is a simple tree. Indeed, by Proposition 5.1, the
graph Ek(u) is a simple tree. We may assume that u is k-bispecial (otherwise,
the property is obviously true). Let (p, q) be an edge of E ′k(u). Then (p, q) is an
edge of Ek(u) and since the latter is a simple tree either p is the unique vertex
in Lk(u) such that pu is right-special or q is the unique vertex in Rk(u) such
that uq is left-special (both cases can occur simultaneously). Assume the first
case, the other being proved in a symmetric way. If (p′, q′) is another edge of
E ′(u), then (p, q′) is an edge of Ek(u). Since α(p) ∈ Bs and α(q) ∈ tB, we
have actually (p, q′) ∈ E′k(u). Thus E ′k(u) contains the two vertices of Ek(u)
connected to more than one other vertex and this implies that E ′k(u) is a simple
tree.

For p ∈ L′k(u), let λ(p) be the first letter of α(p) and for q ∈ R′k(u), let ρ(q)
be the last letter of α(q).

Claim 2. The graph E1(w) is the image by the maps λ, ρ of the graph E ′k(u).
Indeed, one has (a, b) ∈ E1(w) if and only if there exist (p, q) ∈ E′k(u) such that
λ(p) = a and ρ(q) = b.

Let us consider a graph homomorphism φ preserving bipartiteness and such
such that left vertices are sent to left vertices and right vertices to right ones:
Then, it is easy to verify that the image of a simple tree by φ is again a simple
tree. Thus E1(w) is a simple tree, which concludes the proof.

We are now ready to prove the theorem.
Proof of Theorem 6.1. Every conjugacy is a composition of a higher block code
and an alphabetic morphism (see [20, Proposition 1.5.12]). Thus Theorem 6.1
is a direct consequence of Lemmas 6.3 and 6.6.

Example 6.7 We have seen in Example 3.7 that the image Y = α(X) of the
Tribonacci shift X by the morphism α : a 7→ a, b 7→ a, c 7→ c is eventually den-
dric. This is actually a consequence of Theorem 6.1. Indeed α is a injective by
Example 3.7, and thus a conjugacy from X to α(x) = Y . The images of a Stur-
mian shift space by a non trivial alphabetic morphism have been investigated
in [22].

7 Minimal eventually dendric shifts

A shift space X is irreducible if for any u, v ∈ L(X) there is a word w such that
uwv ∈ L(X) (equivalently L(X) is called recurrent).

A nonempty shift space is minimal if it does not contain properly another
nonempty shift space. As well known, X is minimal if and only if it is uniformly
recurrent, that is for any w ∈ L(X) there exists an n ≥ 0 such that w is a factor
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of any word in Ln(X). If X is minimal and infinite, then there exists for every
w ∈ L(X) an integer n ≥ 1 such that wn /∈ L(X). Indeed, otherwise, L(X)
contains the periodic word with period w and thus X is equal to the finite shift
space formed by the shifts of · · ·ww · ww · · · .

A minimal shift space is irreducible but the converse is false, since for ex-
ample the full shift AZ is irreducible but not minimal as soon as A has at least
two elements.

Let X be a shift space. The set of complete return words to a word w ∈ L(X)
is the set CRX(w) of words having exactly two factors equal to w, one as a proper
prefix and the other one as a proper suffix. It is clear that X is minimal if and
only if it is irreducible and if for every word w the set of complete return words
to w is finite.

If wu is a complete return word to w, then u is called a (right) return word to
w. We denote byRX(w) the set of return words to w. Clearly Card(CRX(w)) =
Card(RX(w)).

Example 7.1 Let X be the Tribonacci shift (see Example 3.7). The image of
X under the morphism α : a, b → a, c → c. Then RX(a) = {a, ba, ca} and
RX(c) = {abac, ababac, abaabac}.

By a result of [2], if X is minimal and neutral (a fortiori if X is dendric) the
set R(w) has Card(A) elements for every w ∈ L(X). This is not true anymore
for eventually dendric shift spaces, as shown in the following example.

Example 7.2 Let X be the Tribonacci shift and let Y = α(X) be, as in Ex-
ample 6.7 the image of X under the morphism α : a, b→ a, c→ c. Then, using
Example 7.1, we find RY (a) = {a, ca} while RY (c) = {aaac, aaaaac, aaaaaac}.

We will prove that for eventually dendric sets, a weaker property is true. It
implies that the cardinality of sets of return words is eventually constant.

For w ∈ L(X), set ρX(w) = r1(w) − 1 and for a set W ⊂ L, set ρX(W ) =∑
w∈W ρX(w) (if W is infinite, ρX(W ) is the supremum of the values of ρX(U)

over the finite subsets U of W ). By the symmetric of Proposition 3.1, for every
neutral word w ∈ L(X), we have

ρX(w) =
∑

a∈L1(w)

ρX(aw). (7.1)

Theorem 7.3 Let X be an irreducible shift space which is eventually dendric
with threshold m. For every w ∈ L(X), the set RX(w) is finite. Moreover, for
every w ∈ L≥m(X), we have

Card(RX(w)) = 1 + ρX(Lm(X)). (7.2)

Note that for m = 0, we obtain Card(RX(w)) = Card(A) since ρX(ε) =
Card(A)− 1.

To prove Theorem 7.3 we need to introduce some definitions.
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Let X be a shift space on an alphabet A. A prefix code (resp. a suffix code)
is a set of non-empty words such that none of them is a prefix (resp. a suffix) of
another one. A prefix code (resp. a suffix code) U ⊂ L(X) is called X-maximal
if it is not properly contained in a prefix code (resp. suffix code) V ⊂ L(X)
(see, for instance, [3]).

Let U ⊂ L(X) be a finite X-maximal suffix code, let v be a word such that
Av ∩ L(X) ⊂ U . We denote

∆u(U) = (U \Au) ∪ {u}. (7.3)

Conversely, given a suffix code V ⊂ L(X) and a word v ∈ V , we denote

∆′v(V ) = (V \ {v}) ∪ (Av ∩ L(X)). (7.4)

For a finite set U we denote `(U) as the sum of the lengths of the words of
U . The following elementary lemma will be used repeatedly.

Lemma 7.4 Let U, V, u, v be as above.

1. The set ∆u(U) is either reduced to the empty word or it is an X-maximal
suffix code. Moreover, `(∆u(U)) < `(U).

2. The set ∆′v(V ) is a suffix code.

3. One has U = ∆′u (∆u(U)) and V = ∆v(∆′v(V ))).

u u v v

U ∆u(U) V ∆′v(V )

Figure 12: The sets U and ∆u(u) (on the left) and V and ∆′v(V ) (on the right).

Proposition 7.5 Let X be a shift space which is eventually dendric with thresh-
old m. Then ρX(U) is finite for every suffix code U ⊂ L(X). If U is a finite
X-maximal suffix code with U ⊂ L≥m(X), then

ρX(U) = ρX(Lm(X)). (7.5)

Proof. For any suffix code U ⊂ L(X), let Um be the union

Um = (U ∩ L<m(X)) ∪ (Lm(X) ∩ S) ,

where S is the set of words which are suffixes of some words of U . Note that Um

is a finite suffix code. It is equal to Lm(X) if U is X-maximal and contained in
L≥m(X).

20



Assume first that U ⊂ L(X) is a finite X-maximal suffix code. We prove by
induction on the sum `(U) of the lengths of the words of U that

ρX(U) = ρX(Um). (7.6)

If all words of U are of length at most m, then U = Um and thus Equa-
tion (7.6) holds. Otherwise, let w ∈ U be of maximal length. Set w = au
with a ∈ A. Then Au ∩ L(X) ⊂ U . Set U ′ = ∆u(U). Since U = ∆′u(U ′) by
Lemma 7.4, we have by Equation (7.4)

ρX(U) = ρX(U ′)− ρX(u) +
∑

a∈L1(v)

ρX(au).

Since u is neutral (because |u| ≥ m), we have, by Equation (7.1),

ρX(U) = ρX(U ′).

By induction hypothesis, Equation (7.6) holds for U ′. Since Um = U ′m, we
have ρX(U) = ρX(U ′) = ρX(U ′m) = ρX(Um) and Equation (7.6) is proved.

If U ⊂ L≥m(X), then Um = Lm(X) and thus Equation (7.5) is proved.
If U is infinite, then ρX(U) is the supremum of the values of ρX(V ) on the

finite subsets V of U . Any finite suffix code V ⊂ L(X) is contained in a finite
X-maximal suffix code W and ρX(V ) ≤ ρX(W ). By Equation (7.6), this implies
ρX(V ) ≤ ρX(Wm). There is a finite number of possible Wm and thus ρX(V ) is
bounded. We conclude that ρX(U) is finite.

Proof of Theorem 7.3. Consider a word w ∈ L(X) and let P be the set of proper
prefixes of CR(w). For p ∈ P , denote α(p) = Card{a ∈ A | pa ∈ P ∪CR(w)}−1.
Then CR(w) is finite if and only if P is finite. Set α(P ) =

∑
p∈P α(p). Since

CR(w) is a prefix code, it is the set of leaves of a tree with f = Card(CR(w))
leaves, i internal nodes and α(P ) + i edges. Since f = e− i+ 1, we have

Card(CR(w)) = α(P ) + 1, (7.7)

Let U be the set of words in P which are not proper prefixes of w. We claim
that U is an X-maximal suffix code.

Indeed, if u, vu ∈ U , then w is a proper prefix of u and thus is an internal
factor of vu, a contradiction unless v = ε. Thus U is suffix.

Consider r ∈ L(X). Then, since L(X) is recurrent, there is some s ∈ L(X)
such that wsr ∈ L(X). Let u be the shortest suffix of wsr which has a proper
prefix equal to w . Then u ∈ U . This shows that U is an X-maximal suffix
code.

We have α(p) = 0 for any proper prefix p of w since any word in CR(w) has
w as a proper prefix. Next we have α(p) = ρX(p) for any p ∈ U . Indeed, if
ua ∈ L(X) for u ∈ P and a ∈ A, then ua ∈ CR(w)∪P since L(X) is recurrent.
Thus we have α(P ) = ρX(U).

By Proposition 7.5, ρX(U) is finite. Therefore, Equation 7.7 shows that
Card(CR(w)) = Card(R(w)) is finite.
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Assume finally that |w| ≥ m. Then U ⊂ L≥m(X) and thus, by Proposi-
tion 7.5, we have ρX(U) = ρX(Lm(X)). Thus we have

α(P ) = ρX(Lm(X)).

By Equation (7.7), this implies Equation (7.2).

It is known that for dendric shift spaces, irreducibility is enough to guarantee
minimality [13]. We obtain as a direct corollary of Theorem 7.3 that this still
holds for eventually dendric shifts.

Corollary 7.6 An eventually dendric shift space is minimal if and only if it is
irreducible.

Proof. Let X be an irreducible shift space. By Theorem 7.3, the set R(w) is
finite for every w ∈ L(X). Thus X is minimal.

Note that the proof shows that Corollary 7.6 holds for the more general class
of shift spaces which are eventually neutral with threshold m, in the sense that
every word of length at least m is neutral.

The class of eventually neutral shift spaces includes the shift spaces X such
that L(X) is neutral with characteristic c introduced in [13]. By definition,
L(X) is neutral with characteristic c if every non-empty word w ∈ L(X) is
neutral and if m(ε) = 1− c. Such a set is eventually neutral with threshold at
most 1. Corollary 7.6 is proved in [13] for neutral sets of characteristic c with a
similar proof.

As observed in [11], one may use the result on neutral sets with characteristic
c to obtain a proof of Corollary 7.6. Indeed, if X is eventually dendric with
threshold m, then the m-th higher block shift space X(m) is eventually neutral
with threshold at most 1 (a priori, we know nothing about the behavior of the
empty word).

Note also that Theorem 7.3 shows that in a minimal eventually dendric shift
space the cardinality of sets of complete return words is bounded. There exist
minimal shift spaces which do not have this property (see [18, Example 3.17]).

8 Generalized extension graphs

We will now see how the conditions on extension graphs can be generalized to
graphs expressing the extension by words having different length. We will prove
the following statement.

Proposition 8.1 For every n ≥ 1 and m ≥ 0, the graph En(w) is a tree for all
w ∈ L≥m(X) if and only if En+1(w) is a tree for all words w ∈ L≥m(X).

We will need the following notions which allow to replace in the graphs
En(X) the set of all words of length n by a set of words of different lengths.
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Let X be a shift space on an alphabet A. A set U ⊂ L(X) is said to be right
X-complete (resp. left X-complete) if every word of L(X) either has a prefix
(resp. suffix) in U or is a prefix (resp. suffix) of a word of U .

It is not difficult to show that a prefix code (resp. a suffix code) U ⊂ L(X)
is X-maximal if and only if it is right X-complete (resp. left X-complete).

For U, V ⊂ A∗ and w ∈ L(X), let

LU (w) = {u ∈ U | uw ∈ L(X)} and RV (w) = {v ∈ V | wv ∈ L(X)}.

Let U ⊂ A∗ (resp. V ⊂ A∗) be an suffix code (resp. prefix code) and
w ∈ L(X) be such that LU (w) is an X-maximal suffix code (resp. RV (w) is
an X-maximal prefix code). The generalized extension graph of w relative to
U, V is the following undirected bipartite graph EU,V (w). The set of vertices
is the disjoint union of LU (w) and RV (w). The edges are the pairs (u, v) ∈
LU (w)×RV (w) such that uwv ∈ L(X). In particular En(w) = ELn(X),Ln(X)(w).

The proof uses the following statement. The only if part of the next result
is [5, Lemmas 3.8 and 3.10].

Lemma 8.2 Let X be a shift space and let w ∈ L(X). Let U ⊂ L(X) be a
finite X-maximal suffix code and let V ⊂ L(X) be finite X-maximal prefix code.
Let ` ∈ L(X) be such that A`∩L(X) ⊂ U and such that EA,V (`w) is a tree. Set
U ′ = ∆`(U). The graph EU ′,V (w) is a tree if and only if the graph EU,V (w) is a
tree.

Proof. We need only to prove the if part.
First, note that the hypothesis that EA,V (`w) is a tree guarantees that the

left vertices A` in EU,V (w) are clusterized: for any pair of vertices a`, b` there
exists a unique reduced path from a` to b` in EU,V (w) using as left vertices
only elements of A`. Indeed, such a path exists since the subgraph EA`,V (w) of
EU,V (w) is isomorphic to EA,V (`w) that is connected. Since EU,V (w) is a tree,
this path is unique.

Let v, v′ ∈ RV (w) be two distinct vertices and let π be the unique reduced
path from v to v′ in EU,V (w). We show that we can find a unique reduced path
π′ from v to v′ in EU ′,V (w).

If π does not pass by A`, we can simply define π′ = π. Otherwise, we can
decompose π in a unique way as a concatenation of a path π1 from v to a vertex
in A` not passing by A` before, followed by a path from A` to A` (using on
the left only vertices from A`) and a path π2 from A` to v′ without passing in
A` again. We consider in EU ′,V (w) the unique path π′1 from v to ` obtained by
replacing the last vertex of π1 by ` and the unique reduced path π′2 from ` to
v′ obtained by replacing the first vertex of π2 by `. In this case we define π′ as
the concatenation of π′1 and π′2.

The reduced path π′ is unique. Indeed, let us suppose that we have a different
path π∗ from v to v′ in EU ′,V (w). If π∗ does not pass (on the left) by ` then we
would find a path having the same vertices in EU,V (w) which is impossible since
the graph is acyclic. Let us suppose that both π′ and π∗ passes by `. Without
loss of generality let us suppose that we have a cycle in EU ′,V (w) passing by `
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and v (the case with v′ being symmetric). Let us define by π′0 and π∗0 the two
distinct subpaths of π′ and π∗ respectively going from v to `. Since L(X) is
extendable, we can find a`, b` ∈ U , with a, b ∈ A not necessarily distinct, and
two reduced paths π1 from v to a` and and π2 from v to b` in EU,V (w) obtained
from π′0 and π∗0 by replacing the vertex ` by a` and b` respectively. From the
remark at the beginning of the proof we know that we can find a reduced path
in EU,V (w) from a` to b`. Thus we can find a nontrivial cycle in EU,V (w), which
contradicts the acyclicity of the graph.

A symmetric statement of Lemma 8.2 holds. To state it, we introduce the
following complement to the ∆ operator. For a finite X-maximal prefix code V
and a word r such that rA ∩ L(X) ⊂ V , set

Γr(V ) = (V \ rA) ∪ {r}. (8.1)

Conversely, for a finite X-maximal prefix code W and r ∈W , we denote

Γ′r(W ) = (W \ {r}) ∪ (rA ∩ L(X)). (8.2)

A symmetric statement of Lemma 7.4 holds. It allows to state a symmetric
statement of Lemma 8.2 for r ∈ L(X) such that rA ∩ L(X) ⊂ V and EU,A(wr)
is a tree, with V ′ = Γr(V ): the graph EU,V (w) is a tree if and only if EU,V ′(w)
is a tree.

Lemma 8.3 Let n ≥ 1, let m ≥ 0 and let V be a finite X-maximal prefix
code. If ELn(X),V (w) is a tree for every w ∈ L≥m(X), then for each word
u ∈ L≥m+n−1(X), the graph EA,V (u) is a tree.

Proof. Set u = `w with |w| = m. The graph EA,V (u) is obtained from
ELn(X),V (u) by identifying the vertices of Ln(u) ending with the same letter.
Since ELn(X),V (u) is connected, EA,V (u) is also connected.

Set ` = `′`′′ with |`′| = n − 1. The graph EA,V (`w) is isomorphic to
EA`′,V (`′′w) which is a subgraph of En(`′′w) and thus it is acyclic.

Thus EA,V (u) is a tree.

A symmetric statement holds. For n ≥ 1, m ≥ 0 and U a finite X-maximal
suffix code: If EU,Ln(X)(w) is a tree for every w ∈ L≥m(X), then EU,A(v) is a
tree for every v ∈ L≥m+n−1(X).
Proof of Proposition 8.1. We proceed in several steps.
Step 1. Assume first that En(w) is tree for every word w ∈ L≥m(X). We fix
some w ∈ L≥m(X).
Step 1.1 We claim that for any finite X-maximal suffix code U formed of words
of length n or n+ 1, the graph EU,Ln(X)(w) is a tree by induction on γn+1(U) =
Card(LU (w) ∩An+1).

The property is true for γn+1(U) = 0, since then EU,Ln(X)(w) = En(w).
Assume now that γn+1(U) > 0. Let a` with a ∈ A be a word of length n+ 1 in
LU (w). Since U is an X-maximal suffix code with words of length n or n + 1,
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we have A` ∩ L(X) ⊂ U . Let us consider U ′ = ∆`(U). Since γn+1(U ′) <
γn+1(U), by induction hypothesis the graph EU ′,Ln(X)(w) is a tree. Moreover,
by Lemma 8.3, the graph EA,Ln(X)(`w) is a tree.

Thus, by Lemma 8.2, the graph EU,Ln(X)(w) is a tree. This proves the claim.
Step 1.2 We now claim that for any finite X-maximal prefix code V formed
of words of length n or n + 1, the graph ELn+1(X),V (w) is a tree. We use an
induction on δn+1(V ) = Card(RV (w) ∩An+1).

The property is true for δn+1(V ) = 0, since the graph ELn+1(X),V (w) =
ELn+1(X),Ln(X)(w), is a tree by Step 1.1. Assume now that δn+1(V ) > 0. Let ra
with a ∈ A be a word of length n+1 in RV (w). Since V is an X-maximal prefix
code with words of length n or n+ 1, we have rA ∩L(X) ⊂ U . Let us consider
V ′ = Γr(V ). Since δn+1(V ′) < δn+1(V ), by induction hypothesis the graph
ELn+1(X),V ′(w) is a tree. Moreover, by the symmetric version of Lemma 8.3, the
graph ELn+1(X),A(wr) is a tree. This proves the claim.

Since En+1(w) = ELn+1(X),Ln+1(X)(w), we conclude that En+1(w) is a tree.
Step 2 Assume now that En+1(w) is a tree for every w ∈ L≥m(X). Fix some
w ∈ L≥m(X).
Step 2.1 We first claim that EU,Ln+1(X) is a tree for every X-maximal suffix code
U formed of words of length n or n+ 1 by induction on γn(U) = Card(LU (w)∩
An).

The property is true if γn(U) = 0, since then EU,Ln+1(X)(w) = En+1(w).
Assume next that γn(U) > 0. Let ` ∈ LU (w)∩An. Set W = ∆′`(U) or equiv-

alently U = ∆`(W ). Then δn(W ) < δn(U) and consequently EW,Ln+1(X)(w) is
a tree by induction hypothesis. On the other hand, by Lemma 8.3, the graph
EA,Ln+1(X)(`w) is also a tree. By Lemma 8.2, the graph EU,Ln+1(X)(w) is a tree
and thus the claim is proved.
Step 2.2 We now claim that ELn(X),V (w) is a tree for every X-maximal pre-
fix code V formed of words of length n or n + 1 by induction on δn(V ) =
Card(RV (w) ∩An).

The property is true if δn(V ) = 0 by Step 2.1. Assume now that δn(V ) > 0.
Let r ∈ RV (w) ∩ An and let T = Γ′r(V ) or equivalently V = Γr(T ). Then
δn(T ) < δn(V ) and thus ELn(X),T (w) is a tree by induction hypothesis. On the
other hand, by the symmetric version of Lemma 8.3, the graph ELn(X),A(wr) is
also a tree. By Lemma 8.2, the graph ELn(X),T (w) is a tree and thus the claim
is proved.

Since En(w) = EU,V (w) for U = V = Ln(X), it follows from the claim that
En(w) is a tree.

The following result shows that in the definition of eventually dendric shift
spaces, one can replace the graphs E1(w) by En(w) with the same threshold.

Theorem 8.4 Let X be a shift space. For every m ≥ 1, the following conditions
are equivalent.

(i) X is eventually dendric with threshold m,

(ii) the graph En(w) is a tree for every n ≥ 1 and every word w ∈ L≥m(X),
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(iii) there is an integer n ≥ 1 such that En(w) is a tree for every word w ∈
L≥m(X).

Proof. (i) ⇒ (ii). It is proved by ascending induction on n using iteratively
Proposition 8.1.

(ii) ⇒ (iii). It is obvious.
(iii) ⇒ (i). It is proved by descending induction on n using Proposition 8.1.

9 Complete bifix decoding

Let X be a shift space on an alphabet A. A subset of L(X) is two-sided X-
complete if it is both left and right X-complete.

A bifix code is both a prefix code and a suffix code. A bifix code U ⊂ L(X)
is X-maximal if it is not properly contained in a bifix code V ⊂ L(X). If a
bifix code U ⊂ L(X) is right X-complete (resp. left X-complete), it is an X-
maximal bifix code since it is already an X-maximal prefix code (resp. suffix
code). It can be proved conversely that if X is irreducible, a finite bifix code is
X-maximal if and only if it is two-sided X-complete (see [3, Theorem 4.2.2]).
This is not true in general, as shown by the following example.

Example 9.1 Let X be the shift space such that L(X) = a∗b∗. The set U =
{aa, b} is an X-maximal bifix code. Indeed, it is a bifix code and it is left X-
complete as one may verify. However it is not right X-complete since no word
in ab∗ has a prefix in U .

Let X be a shift space and let U be a two-sided X-complete finite bifix
code. Let ϕ : B → U be a coding morphism for U , that is, a bijection from an
alphabet B onto U extended to a morphism from B∗ into A∗. Then ϕ−1(L(X))
is factorial and, since U is two-sided complete, it is extendable. Thus it is the
language of a shift space called the complete bifix decoding of X with respect to
U .

For example, for any n ≥ 1, the set Ln(X) is a two-sided complete bifix code
and the corresponding complete bifix decoding is the decoding of X by non-
overlapping n-blocks. It can be identified with the dynamical system (X,σn).

In [5, Theorem 3.13] it is proved that the maximal bifix decoding of an
irreducible dendric shift space is a dendric shift space. Actually, the hypothesis
that X is irreducible is only used to guarantee that the X-maximal bifix code
used for the decoding is also an X-maximal prefix code and an X-maximal suffix
code. In the definitions used here of a maximal bifix decoding, we do not need
this hypothesis.

Theorem 9.2 Any complete bifix decoding of an eventually dendric shift space
is an eventually dendric shift space having the same threshold.

Note that any X-maximal suffix code U one has Card(U) ≥ Card(L1(X)).
Indeed, every a ∈ L1(X) appears as a suffix of (at least) an element of X.
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Lemma 9.3 Let X be an eventually dendric shift space with threshold n. For
any w ∈ L≥n(X), any X-maximal suffix code U and any X-maximal prefix code
V , the graph EU,V (w) is a tree.

Proof. We use an induction on the sum of the lengths of the words in U, V .
The property is true if the sum is equal to 2 Card(L1(X)). Indeed, for every
w ∈ L≥n(X) one has U = L(w) and V = R(w) and thus EU,V (w) = E1(w) is a
tree. Otherwise, we may assume that U contains words of length at least 2 (the
case with V being symmetrical). Let u ∈ U be of maximal length. Set u = a`
with a ∈ A. Since U is an X-maximal suffix code, we have A`∩L(X) ⊂ U . Set
U ′ = ∆`(U). By induction hypothesis, the graphs EU ′,V (w) and EA,V (`w) are
trees. Thus, by Lemma 8.2, EU,V (w) is also a tree.

Proof of Theorem 9.2. Assume that X is eventually dendric with threshold n.
Let ϕ : B → U be a coding morphism for U and let Y be the decoding of
X corresponding to U . Consider a word w of L(Y ) of length at least n. By
Lemma 9.3, and since |ϕ(w)| ≥ n, the graph EU,U (ϕ(w)) is a tree. But for
b, c ∈ B, one has bwc ∈ L(Y ) if and only if ϕ(bwc) ∈ L(X), that is, if and only
if (ϕ(b), ϕ(c)) ∈ E1(ϕ(w)). Thus E1(w) is isomorphic to EU,U (ϕ(w)) and thus
E1(w) is a tree. This shows that Y is eventually dendric with threshold n.

Example 9.4 Let X be the Fibonacci shift. Then U = {aa, aba, b} is an X-
maximal bifix code. Let ϕ : {u, v, w} → U be the coding morphism for U
defined by ϕ : u 7→ aa, v 7→ aba, w 7→ b. The complete bifix decoding of X with
respect to U is an eventually dendric shift space with threshold 0. It is actually
the natural coding of an interval exchange transformation on three intervals
(see [6]). The extension graphs E1(ε, Y ) and E1(v, Y ) are shown in Figure 13.

u

v

w

u

v

w

u

v

u

v

Figure 13: The graphs E1(ε, Y ) and E1(w, Y ).

A particular case of complete bifix decoding is related to the skew product of
two dynamical systems, a notion which is well-known in topological dynamics
(see [10]). Indeed, assume that we start with a shift space X, a transitive
permutation group G on a set Q and a morphism f : A∗ → G. We denote by
q 7→ q · w the result of the action of the permutation f(w) on the point q ∈ Q.
The skew product of X and (G,Q) is the shift space Y on the alphabet A×Q
formed by the bi-infinite words (ai, qi) such that (ai) ∈ X and pi+1 = pi · f(ai)
for all i ∈ Z. Fix a point i ∈ Q. The set of words w such that i · w = i is
a submonoid generated by a bifix code U which is two-sided complete. The
decoding of S = L(X) with respect to U ∩ S is the language of the dynamical
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system induced by Y on the set of y ∈ Y such that y0 = (a, i) for some a ∈ A
(see [6] for more details).

Example 9.5 Let X be the Fibonacci shift, i.e., the shift whose language is
the Fibonacci set. Let Q = {1, 2}, G = Z/2Z and f : A∗ → G defined by a 7→
(12), b 7→ (1). Choosing i = 1, the bifix code U built as above is U = {aa, aba, b}
as in Example 9.4.

10 Conclusion

The class of eventually dendric shifts is shown in this paper to have strong
closure properties. It leaves open the question of whether it is closed under
taking factors, that is, images by a sliding block code not necessarily bijective.

It would be interesting to know how other properties which are known to
hold for dendric shifts extend to this more general class. This includes the
following:

1. To which extent the properties of return words proved for minimal dendric
shifts extend to eventually dendric ones. For example, what can we say
about the subgroup of the free group generated by return words to a given
word? In [5] it is proved that for minimal dendric sets, every set of return
words is a basis of the free group, while in the case of specular sets, the set
of return word to a fixed word is a basis of a particular subgroup called
the even subgroup (see [4]).

2. Is there a finite S-adic representation for all minimal eventually dendric
shifts? There is one for minimal dendric shifts [7].

3. Is the property of being eventually dendric decidable for a substitutive
shift, as it is for dendric ones [12]?

It would also be interesting to know whether the conjugacy of effectively
given eventually dendric shifts is decidable (the conjugacy of substitutive shifts
was recently shown to be decidable [17]).
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