Skip to main content

On the Quantum and Classical Complexity of Solving Subtraction Games

  • Conference paper
  • First Online:
Book cover Computer Science – Theory and Applications (CSR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11532))

Included in the following conference series:

Abstract

We study algorithms for solving Subtraction games, which are sometimes referred as one-heap Nim games.

We describe a quantum algorithm which is applicable to any game on DAG, and show that its query complexity for solving an arbitrary Subtraction game of n stones is \(O\left( n^{3/2}\log n\right) \).

The best known deterministic algorithms for solving such games are based on the dynamic programming approach [8]. We show that this approach is asymptotically optimal and that classical query complexity for solving a Subtraction game \(\varTheta \left( n^2\right) \) in general.

Of course, this difference between classical and quantum algorithms is far from the best known examples, but, up to our knowledge, this paper is the first constructive “quantum” contribution to the algorithmic game theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablayev, F., Ablayev, M., Khadiev, K., Vasiliev, A.: Classical and quantum computations with restricted memory. In: Böckenhauer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 129–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98355-4_9

    Chapter  Google Scholar 

  2. Ablayev, F., Ambainis, A., Khadiev, K., Khadieva, A.: Lower bounds and hierarchies for quantum memoryless communication protocols and quantum ordered binary decision diagrams with repeated test. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 197–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_14

    Chapter  Google Scholar 

  3. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math. 37(6), 670–682 (2016)

    Article  MathSciNet  Google Scholar 

  4. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6_6

    Chapter  Google Scholar 

  5. Ambainis, A.: Understanding quantum algorithms via query complexity. arXiv preprint arXiv:1712.06349 (2017)

  6. Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64(3), 030301 (2001)

    Article  Google Scholar 

  7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)

    MATH  Google Scholar 

  9. De Wolf, R.: Quantum computing and communication complexity. Ph.D. thesis (2001)

    Google Scholar 

  10. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47(14–15), 2543–2556 (2000)

    Article  MathSciNet  Google Scholar 

  11. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077 (1999)

    Article  MathSciNet  Google Scholar 

  12. Ferguson, T.S.: Game theory class notes for math 167, fall 2000 (2000). https://www.cs.cmu.edu/afs/cs/academic/class/15859-f01/www/notes/comb.pdf

  13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

    Google Scholar 

  14. Grundy, P.M.: Mathematics and games. Eureka 2, 6–8 (1939)

    Google Scholar 

  15. Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A.: Error-free affine, unitary, and probabilistic OBDDs. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 175–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_15

    Chapter  Google Scholar 

  16. Jordan, S.: Bounded error quantum algorithms zoo. https://math.nist.gov/quantum/zoo

  17. Khadiev, K., Khadieva, A.: Reordering method and hierarchies for quantum and classical ordered binary decision diagrams. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 162–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58747-9_16

    Chapter  MATH  Google Scholar 

  18. Khadiev, K., Khadieva, A., Mannapov, I.: Quantum online algorithms with respect to space and advice complexity. Lobachevskii J. Math. 39(9), 1210–1220 (2018)

    Article  MathSciNet  Google Scholar 

  19. Khadiev, K., Safina, L.: Quantum algorithm for dynamic programming approach for dags. Applications for zhegalkin polynomial evaluation and some problems on dags. In: Proceedings of Unconventional Computation and Natural Computation 2019. LNCS, vol. 11493 (2019). https://doi.org/10.1007/978-3-030-19311-9_13

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  21. Sprague, R.P.: Über mathematische kampfspiele. Tohoku Math. J. 41, 438–444 (1935)

    MATH  Google Scholar 

Download references

Acknowledgement

The research is supported by PostDoc Latvia Program, and by the ERDF within the project 1.1.1.2/VIAA/1/16/099 “Optimal quantum-entangled behavior under unknown circumstances”.

The reported study was funded by RFBR according to the research project No. 19-37-80008.

We would like to thank the anonymous reviewers for their detailed and helpful comments. We also thank Dr. Abuzer Yakaryılmaz for the proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kravchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kravchenko, D., Khadiev, K., Serov, D. (2019). On the Quantum and Classical Complexity of Solving Subtraction Games. In: van Bevern, R., Kucherov, G. (eds) Computer Science – Theory and Applications. CSR 2019. Lecture Notes in Computer Science(), vol 11532. Springer, Cham. https://doi.org/10.1007/978-3-030-19955-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19955-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19954-8

  • Online ISBN: 978-3-030-19955-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics