Skip to main content

On the Complexity of Mixed Dominating Set

  • Conference paper
  • First Online:
  • 621 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11532))

Abstract

A mixed dominating set (mds) of a graph G is a set \(S \subseteq V(G) \cup E(G)\) such that every element \(x \in (V(G) \cup E(G)) \setminus S\) is either adjacent to or incident with an element of S. In the Mixed Dominating Set (MDS) problem, we are given an n-vertex graph G and a positive integer k, and the objective is to decide whether G has an mds of size at most k. On general graphs, MDS parameterized by k is fixed-parameter tractable, but has no polynomial kernel unless coNP \(\subseteq \) NP/Poly. In this paper, we study the restriction of MDS to several graph classes and establish the following results.

  • On proper interval graphs, MDS is polynomial time solvable.

  • On graphs that exclude \(K_{d,d}\) as a subgraph, MDS admits a kernel of size \(\mathcal {O}(k^d)\).

  • On split graphs, MDS does not admit a polynomial kernel unless coNP \(\subseteq \) NP/Poly.

In addition, we show that on general graphs, MDS admits an exact algorithm with running time \(2^n n^{\mathcal {O}(1)}\).

This work is supported by the European Research Council (ERC) via grant LOPPRE, reference 819416 and Norwegian Research Council via project MULTIVAL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\mathcal {O}^\star \) notation suppresses the polynomial factor. That is, \(\mathcal {O}(f(k)n^{\mathcal {O}(1)})=\mathcal {O}^\star (f(k))\).

References

  1. Alavi, Y., Behzad, M., Lesniak-Foster, L.M., Nordhaus, E.A.: Total matchings and total coverings of graphs. J. Graph Theor. 1(2), 135–140 (1977)

    Article  MathSciNet  Google Scholar 

  2. Alavi, Y., Liu, J., Wang, J., Zhang, Z.: On total covers of graphs. Discrete Math. 100(1–3), 229–233 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (meta) kernelization. J. ACM 63(5), 44:1–44:69 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)

    Book  Google Scholar 

  5. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  6. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)

    Article  MathSciNet  Google Scholar 

  7. Drange, P.G., et al.: Kernelization and sparseness: the case of dominating set. In: 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, Orléans, France, 17–20 February 2016, pp. 31:1–31:14 (2016)

    Google Scholar 

  8. Eickmeyer, K., et al.: Neighborhood complexity and kernelization for nowhere dense classes of graphs. In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, Warsaw, Poland, 10–14 July 2017, pp. 63:1–63:14 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.63

  9. Erdös, P., Meir, A.: On total matching numbers and total covering numbers of complementary graphs. Discrete Math. 19(3), 229–233 (1977)

    Article  MathSciNet  Google Scholar 

  10. Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 195–205. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92248-3_18

    Chapter  Google Scholar 

  11. Hatami, P.: An approximation algorithm for the total covering problem. Discussiones Mathematicae Graph Theory 27(3), 553–558 (2007)

    Article  MathSciNet  Google Scholar 

  12. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  13. Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R., McRae, A., Majumdar, A.: Domination, independence and irredundance in total graphs: a brief survey. In: Proceedings of the 7th Quadrennial International Conference on the Theory and Applications of Graphs. vol. 2, pp. 671–683 (1995)

    Google Scholar 

  14. Jain, P., Jayakrishnan, M., Panolan, F., Sahu, A.: Mixed Dominating Set: a parameterized perspective. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 330–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_25

    Chapter  Google Scholar 

  15. Lan, J.K., Chang, G.J.: On the mixed domination problem in graphs. Theor. Comput. Sci. 476, 84–93 (2013)

    Article  MathSciNet  Google Scholar 

  16. Majumdar, A.: Neighborhood hypergraphs: a framework for covering and packing parameters in graphs. Ph.D. thesis, Clemson University (1992)

    Google Scholar 

  17. Manlove, D.: On the algorithmic complexity of twelve covering and independence parameters of graphs. Discrete Appl. Math. 91(1–3), 155–175 (1999)

    Article  MathSciNet  Google Scholar 

  18. Meir, A.: On total covering and matching of graphs. J. Comb. Theory, Ser. B 24(2), 164–168 (1978)

    Article  MathSciNet  Google Scholar 

  19. Peled, U.N., Sun, F.: Total matchings and total coverings of threshold graphs. Discrete Appl. Math. 49(1–3), 325–330 (1994)

    Article  MathSciNet  Google Scholar 

  20. Rajaati, M., Hooshmandasl, M.R., Dinneen, M.J., Shakiba, A.: On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width. CoRR abs/1612.08234 (2016)

    Google Scholar 

  21. Zhao, Y., Kang, L., Sohn, M.Y.: The algorithmic complexity of mixed domination in graphs. Theor. Comput. Sci. 412(22), 2387–2392 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madathil, J., Panolan, F., Sahu, A., Saurabh, S. (2019). On the Complexity of Mixed Dominating Set. In: van Bevern, R., Kucherov, G. (eds) Computer Science – Theory and Applications. CSR 2019. Lecture Notes in Computer Science(), vol 11532. Springer, Cham. https://doi.org/10.1007/978-3-030-19955-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19955-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19954-8

  • Online ISBN: 978-3-030-19955-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics