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Experimental Evaluation of Subgraph Isomorphism
Solvers

Christine Solnon*

INSA-Lyon, LIRIS, UMRS5205, F-69621, France

Abstract. Subgraph Isomorphism (SI) is an NP-complete problem which is at
the heart of many structural pattern recognition tasks as it involves finding a copy
of a pattern graph into a target graph. In the pattern recognition community, the
most well-known SI solvers are VF2, VF3, and RI. SI is also widely studied in
the constraint programming community, and many constraint-based SI solvers
have been proposed since Ullman, such as LAD and Glasgow, for example. All
these SI solvers can solve very quickly some large SI instances, that involve
graphs with thousands of nodes. However, McCreesh et al. have recently shown
how to randomly generate SI instances the hardness of which can be controlled
and predicted, and they have built small instances which are computationally
challenging for all solvers. They have also shown that some small instances, which
are predicted to be easy and are easily solved by constraint-based solvers, appear to
be challenging for VF2 and VF3. In this paper, we widen this study by considering
a large test suite coming from eight benchmarks. We show that, as expected for an
NP-complete problem, the solving time of an instance does not depend on its size,
and that some small instances coming from real applications are not solved by any
of the considered solvers. We also show that, if RI and VF3 can solve very quickly
a large number of easy instances, for which Glasgow or LAD need more time, they
fail at solving some other instances that are quickly solved by Glasgow or LAD,
and they are clearly outperformed by Glasgow on hard instances. Finally, we show
that we can easily combine solvers to take benefit of their complementarity.

1 Introduction

Subgraph Isomorphism (SI) is an NP-complete problem which involves finding a copy
of a pattern graph into a target graph, i.e., finding a mapping that associates a different
target node to each pattern node in such a way that edges are preserved. There are two
main variants of SI: in the non-induced case, only pattern edges must be preserved
(i.e., pattern nodes connected by an edge must be mapped to target nodes connected
by an edge); in the induced case, target edges must also be preserved (i.e., target nodes
connected by an edge cannot be mapped to pattern nodes not connected by an edge).
Sl is at the heart of many structural pattern recognition tasks in different application
fields such as image or biology, for example [7]]. In the pattern recognition community,
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UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University
of Edinburgh and EPSRC (EP/P020267/1).



the most well-known algorithms used to solve SI are VF2 [8]], VF3 [5]], and RI [4].
These solvers will be referred to as PR solvers. PR solvers perform a depth-first search
in a space of states: each state corresponds to a partial mapping where some pattern
nodes have been mapped, and each state is recursively extended by adding to its partial
mapping a new couple of mapped pattern/target nodes.

SI is also widely studied in the constraint programming community as it may be
modelled as a constraint satisfaction problem in a straightforward way. Many constraint-
based solvers have been proposed for solving SI since Ullman [20]] such as, for example,
nRF+ [15]], ILF [21]], LAD [18]], SND [2]], and Glasgow [/1,|16]. These solvers will be
referred to as CP solvers. Like VF2, VF3, and RI, CP solvers recursively extend partial
mappings. However, a fundamental difference is that CP solvers maintain, for each
non-mapped pattern node, the list of candidate target nodes that may be mapped to it, and
they propagate constraints to reduce these lists. This constraint propagation mechanism
is expensive, both in memory and time, but it reduces the number of states to explore.

Recent PR and CP solvers can solve very quickly rather large SI instances, that
involve graphs with thousands of nodes. Indeed, being NP-complete does not mean that
all instances are hard to solve, and some instances of NP-complete problems can be very
easy to solve. In particular, in [|6], Cheeseman et al. show that NP-complete problems
can be summarised by at least one “order parameter”, and that hard instances occur at a
critical value of such a parameter. In [[17]], McCreesh ef al. use this approach to generate
“really hard” random SI instances according to three random graph models. For example,
for Erdds-Rényi random graphs (where edges are generated according to an independent
probability [[11]), instances of non-induced SI may be generated by fixing pattern and
target numbers of nodes, and varying pattern and target edge probabilities from O to
1. In this case, a phase transition occurs between entirely satisfiable instances (when
patterns are sparse and targets are dense) and entirely unsatisfiable instances (when
patterns are dense and targets are sparse), and the location of this phase transition can be
predicted by computing the expected number of solutions. Instances located within this
phase transition are computationally challenging for all solvers even when graphs are
small (e.g., thirty pattern nodes and 150 target nodes). However, the experimental study
reported in [[17] also shows that some small instances which are predicted as easy, and
which are easily solved by CP solvers, appear to be challenging for PR solvers.

In this paper, we widen this experimental study and we experimentally evaluate and
compare RI, VF2, VF3, Glasgow, and LAD on a large test suite of 14,621 instances
coming from eight benchmarks. In Section 2, we describe our test suite. In Section 3,
we show that, as expected for an NP-complete problem, the solving time of an instance
does not depend on its size, and that some small instances (including instances coming
from real applications) are not solved by any of the considered solvers. In Section 4, we
identify easy and hard instances and we show that, if PR solvers are able to solve very
quickly easy instances (for which CP solvers often need more time), they fail at solving
some other instances that are rather quickly solved by CP solvers, and they are clearly
outperformed by Glasgow on hard instances. Finally, in Section 5, we show that we can
easily combine PR and CP solvers to take benefit of their complementarity.



Pattern graphs Target graphs

Class #inst|| #nodes | #edges density #nodes #edges density
min max|/min ~ max|min max|| min max| min max |min max
images 6,302|| 4 170| 4 241| .02 .67||1,072 5,972{1,539  8,888| .00 .00
meshes  3,018|| 40 199|114 539( .02 .15|| 201 5,873| 252 15,292 .00 .02
LV 3,831|| 10 128| 10 4,950| .02 1.00 10 6,671 10 209,000| .00 1.00
randERP 200 30 30/128 387| .29 .89|| 150 150(4,132  8,740| .37 .78
randER  270|| 40 360| 41 12,410 .02 .21|| 200 600 436 34,210/ .02 .19
randBVG  540|| 40 480| 43 2,137/ .01 .20|| 200 800| 299  3,600| .00 .05
randM 360(| 51 777] 76 2,075| .01 .08|| 256 1,296\ 672  4,377| .00 .03
randSF 100{|180 900|478 5,978 .01 .17|| 200 1000{ 592  7,148| .01 .16
Table 1. For each class, we give the number of instances (#inst) and then describe pattern and
target graph features: minimum and maximum number of nodes, number of edges, and density.

2 Experimental set-up

Test suite. We consider 14, 621 instances coming from eight benchmarks described in
Table (1} and available at 1iris.cnrs.fr/christine.solnon/SIP.html. images
and meshes are coming from real applications where both pattern and target graphs
correspond to graphs extracted from segmented images and 3D meshes [9}/19]].

LV is a benchmark described in [[15]. It uses 113 graphs with various properties
coming from the Stanford GraphBase described by Knuth in [13]]. The benchmark is
built by splitting the set of graphs in two parts: the first part contains the 50 smallest
graphs; the second part contains the 63 remaining graphs. We consider all pairs of graphs
such that the pattern graph belongs to the first part, the target graph belongs to the first
or the second part, and the target graph has at least as many nodes as the pattern graph.

rand* (with x € {ERP, ER, BVG, M, SF}) are randomly generated instances.
randERP are instances close to the phase transition (expected to be hard as explained in
[[17]]), and all graphs are Erdds-Rényi graphs. randER, randBVG, and randM are coming
from the database described in [10], and graphs are Erdds-Rényi graphs, (modified)
bounded valence graphs and 4D meshes, respectively. randSF is described in [22] and
it contains scale-free graphs. All instances in randER, randBVG, randM, and randSF
(except 20 instances in randSF) are feasible by construction because the pattern has been
extracted from the target.

All graphs have at least as many edges as nodes. Hence, the size of a graph is
dominated by its number of edges.

Performance measures. The experiments were performed on the EPCC Cirrus HPC
facility, on systems with dual Intel Xeon E5-2695 v4 CPUs and 256GBytes RAM,
running Centos 7.3.1611, and GCC 7.2.0 as the compiler. Each run has been limited to
1,000 seconds of CPU time. Some instances are not solved within this time limit (note
that even when increasing the time limit to 100, 000 seconds some instances are still
unsolved). We consider two different performance measures: when all solvers have been
able to solve all instances of a benchmark, we report the average solving time; when some
instances have not been solved within the time limit, we report the number of solved
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Fig. 1. Number of pattern edges (x-axis), target edges (y-axis), and solving time (colour) for
non-induced SI: top left = Glasgow; top right = LAD; bottom left = RI; bottom right = VF2.

instances within the time limit, and we plot the evolution of the cumulative number of
solved instances with respect to time (i.e., the function f(¢) = #{i € I : ¢; < t} where
1 is the set of instances, s a solver, and ¢; the time spent by s to solve an instance 7 € I).

We do not consider memory consumption as a performance measure as solvers never
run out of memory, even for the largest instances (all solvers have polynomial memory
complexities). However, CP solvers need more memory than PR solvers as they maintain
candidate lists of target nodes for each non-mapped pattern vertex.

Different variants of Glasgow are described in [[1]]. We consider the biased variant,
which is the default settinéﬂ

3 Does the solving time depend on graph sizes?

To study the relation between the solving time and the size of an instance, we plot in
Fig.[T]and 2] the time spent by each solver on each instance. Each instance corresponds
to a point (x, y) where x is the number of pattern edges, y the number of target edges,
and the colour depends on the solving time: yellow if it is smaller than one second, and
black if the instance has not been solved within 1000 seconds (if several instances have
the same size, the colour corresponds to the average solving time for all these instances).

! Glasgow is available at https://github.com/ciaranm/glasgow-subgraph-solver
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Fig. 2. Number of pattern edges (x-axis), target edges (y-axis), and solving time (colour) for
induced SI: top left = Glasgow; top right = LAD; bottom left = RI; bottom right = VF3.

As expected for an NP-complete problem, these figures show us that hardness does
not depend on size. Let us first consider the non-induced case, displayed in Fig. [I]
Unsolved instances (black points) are not specially concentrated in the top right area
of the plots (corresponding to the largest instances). The number of unsolved instances
is quite different from a solver to another, but some black points are common to all
solvers. Among the set of instances which are solved by none of the solvers, the smallest
pattern (resp. target) graph has 62 edges and 30 nodes (resp. 400 edges and 86 nodes).
Many much larger instances are solved in less than one second. The gray line separates
instances that have more target edges than pattern edges (top left) from those that have
less target edges than pattern edges (bottom right). All instances in the bottom right part
are trivially infeasible. However, both VF2 and RI are not able to solve some of them.

When looking at the induced case in Fig|2| we also note that the unsolved instances
are not necessarily those with the largest graphs and the number of unsolved instances is
quite different from a solver to another. Among the set of instances which are solved
by none of the solvers, the smallest pattern (resp. target) graph has 62 edges and 30
nodes (resp. 638 edges and 120 nodes). VF3 has much better results on induced SI than
VF2 on non-induced SI, and it is always able to quickly solve instances that are trivially
infeasible because they have less target edges than pattern edges.
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Fig. 3. Number of pattern edges (x-axis), target edges (y-axis), and classes (colour) of unsolved
instances: left = non-induced SI; right = induced SI.

Non-induced SI Induced SI
feasibility hardness feasibility hardness
Class yes no E EH H U|| yes no E EH HU
images 52 6,250(2,5553,747 0 O 50 6,252(2,764 3,538 0 0
meshes 88 2,930(2,361 553 93 11 0 3,018/2,492 521 1 O
LV 596 3,235|2,097 1,477 137 120{| 191 3,640/2,939 693 139 60
randERP || 164 36 0 48 69 83 0 200 0 0 180 20
randER 270 0 0 203 67 0| 270 0| 72 141 57 0O
randBVG|| 540 0| 461 79 0 0] 540 0] 454 8 0 O
randM 360 0] 309 51 0 0] 360 0] 313 45 20
randSF 80 20 4 9% 0 O 80 200 75 25 00
All 2,150 12,471|7,787 6,254 366 214|1,491 13,130{9,109 5,053 379 80

Table 2. Number of feasible (yes), infeasible (no), easy (E), easy-or-hard (EH), hard (H), and
unsolved (U) instances per class.

4 Where are the hard instances?

To have a better insight into where the hard instances are, we have partitioned each
class of our benchmark into 4 separate groups, depending on instance hardness. As all
instances but those of randERP have not been randomly generated with a model that
allows us to predict hardness with respect to the phase transition location, we consider
an empirical definition of instance hardness:
— an instance is easy if the four solvers are able to solve it within one second;
— an instance is hard if no solver can solve it within one second, but at least one solver
can solve it within the time limit of 1000 seconds;
— an instance is easy-or-hard if at least one solver solves it within one second whereas
at least one solver cannot solve it within one second;
— an instance is unsolved if no solver can solve it within the time limit of 1000 seconds.
In Fig.[3] we display the number of edges in pattern and target graphs of unsolved
instances, and in Table 2] we give the number of instances in each group of each class.
As expected, many randERP instances are unsolved or hard, and none of them is easy:



easy instances easy-or-hard instances hard instances

G| L \'% R G L \% R G| L| V| R
Class time|time| time| time||[#u time|#u time| #u time| #u time|| #u| #u| #u| #u

Non-induced SI
images .1061.374| .201| .002|| O (.18)| 0 (4.07)| 13 -l 00| -| -| - -
meshes .153].026| .044| .016|| 1 -3 -l 276 -1180 -1 20| 23| 91| 91
LV .036(.017| .069| .008|| 12 -1 9 -| 886 -1206 -|| 18| 32{130| 76
randERP - - - -l 0 (21|25 - 48 -1 30 -l 0 65| 69| 64
randER - - - -[| 0 (.88)(17 -l 201 -2 -l 0 57| 67| 14
randBVG|| .017(.119| .004| .003|| 0 (.07)| 0(2.37) 0 (01| 2 | O I
randM .051].095| .013] .003|| 0 (.18)| 0 (3.94)| 18 -2 | O T I
randSF || .007[.004| .497| .001|| O (.11)| O (.10)| 80 -| 15 | O T I
All .094.146| .099| .008||13 -154 -|11,522 -1437 -|| 38(177|357|245
Induced SI
images .136/.388(.002| .002|| 0 (.24)| 0 (3.58) 0 (.00)| O (oL -| - - -
meshes .1731.024( .001| .009(| 0 (1.04)| O (.16)| 103 -1237 -l o O] 1] 1
LV .047].026| .011| .024|| 4 - 8 -l 52 -1 96 -| 10 53| 51| 65
randERP - - - - - -l - - - -l - -|| 0|175|175]175
randER || .021(.260| .061| .030|| 0 (.43)|12 - 2 -1 -l 0] 47| 5| 7
randBVG|| .018|.125] .002| .004|| 0 (.07)| 0 (2.22) 3 -l 4 | Y S I
randM .052].117{.003| .003(| 0 (.17)| 0 (4.31) 6 -l 01| 0f Of 1f O
randSF || .109(.065| .027|.023|| 0 (.14)] 0 (.21) 2 -l 10 | Y S I
All .108].146| .005| .012|| 4 -120 -| 168 -1348 -|| 10{275|233|248
Table 3. Results of Glasgow (G), LAD (L), VF2/VF3 (V), and RI (R) on non-induced (top) and

induced (bottom) SI instances. #u is the number of unsolved instances within 1000s (for easy
instances, #u = 0). When all instances are solved, we report the average solving time in seconds.

these instances are close to the phase transition and they are expected to be challenging
despite their small size. However, not all unsolved instances are coming from randERP.
This shows us that really hard instances may occur even if they have not been generated
on purpose. For the non-induced case, LV and meshes respectively contain 120 and 11
unsolved instances, whereas for the induced case, LV contains 60 unsolved instances. In
both cases, these instances are not the largest ones, and some of them are really small as
illustrated in Fig. 3]

Many instances are easy (7,787 instances for the non-induced case, and 9,109 for the
induced case), and these easy instances are coming from all classes but randERP and
randER for the non-induced case, and all classes but randERP for the induced case.

In Table 2] we also give the number of feasible instance per class. Note that any
instance feasible for the induced case is also feasible for the non-induced case. Three
classes (i.e., randER, randBVG, and randM) only contain feasible instances as they have
been randomly generated in such a way that there always exists at least one solution.
There is no obvious relation between feasibility and hardness: hard and unsolved groups
contain both feasible and infeasible instances.

S Experimental comparison of the solvers

In Table 3] we display the results of the four solvers on the different classes, grouped
with respect to hardness. For easy instances (which are solved by all solvers), RI is an
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Fig. 4. Cumulative number of solved instances: top = easy instances; middle = easy-or-hard
instances; bottom = hard instances; left = non-induced SI; right = induced SI.

order faster than the other solvers for the non-induced case, and VF3 is twice as fast as
RI which is an order faster than Glasgow and LAD for the induced case. Hence, on easy
instances, the fastest solvers clearly are RI for the non-induced case and VF3 for the
induced case, and CP solvers are an order slower.

However, on easy-or-hard and hard instances, PR solvers solve less instances than
LAD, and LAD solves less instances than Glasgow. More precisely, for the non-induced
case, Glasgow (resp. LAD, VF2, and RI) fails at solving 51 (resp. 221, 1879, and 682)
instances. For the induced case, Glasgow (resp. LAD, VF3, and RI) fails at solving 14
(resp. 295, 416, and 596) instances. Hence, on easy-or-hard and on hard instances, the
best solver clearly is Glasgow for both the non-induced and the induced case. Actually
most easy-or-hard instances are trivially solved by Glasgow in less than one second
whereas PR solvers fail at solving many of these instances.
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For the non-induced case, if LAD is outperformed by Glasgow, it is able to solve
much more instances than PR solvers. For the induced case, LAD is also outperformed
by Glasgow and, if it is able to solve more instances than PR solvers on many classes, it
is clearly outperformed by them on randER instances. Actually, LAD is the only solver
which solves less instances for the induced case than for the non-induced case. This
comes from the fact that LAD has been designed for the non-induced case. It has been
extended to handle the induced case in a very naive way (by checking that target edges
are preserved a posteriori), without exploiting properties specific to the induced case.

in Fig. 4] we plot the evolution of the cumulative number of solved instances with
respect to time. For easy instances, RI (resp. VF3) dominates all other solvers for the
non-induced (resp. induced) case, and it is able to solve more than 5, 000 (resp. 7, 000)
instances in less than 0.001s. On these instances, CP solvers often need more time.

For easy-or-hard instances, RI (for the non-induced case) and VF3 (for the induced
case) are able to solve more than 2, 500 instances in less than .001s. However, they fail
at solving hundreds of instances which are easily solved by Glasgow, in less than one
second, and the cumulative number of instances solved by Glasgow becomes larger than
those of RI and VF3 after 0.3s.

For hard instances, Glasgow clearly outperforms all other solvers and it is able to
solve much more instances.

In Fig.[5} we compare the best CP solver (i.e., Glasgow) with the best PR solver
(i.e., RI for the non-induced case, and VF3 for the induced case) on a per instance basis.
Every point below the gray line corresponds to an instance which is solved quicker by
the PR solver than by Glasgow, and the wide majority of these points are on the left of
the vertical line x = 1, corresponding to instances which are solved in less than one
second by Glasgow. Every point above the gray line corresponds to an instance which is
solved quicker by Glasgow than by the PR solver, and many of these points are on the
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horizontal line y = 1, 000, corresponding to instances which are not solved by the PR
solver within the time limit of 1,000 seconds.

6 Combining solvers to take the best of them

Glasgow is complementary to the best PR solver (i.e., RI for the non-induced case and
VE3 for the induced case) as it needs more time on very easy instances, but it is able to
solve more instances. We can take benefit of this complementarity as follows: we run the
best PR solver with a time limit of ¢; seconds; if the instance has not been solved within
this limit, we run Glasgow. The time limit ¢; should be long enough to allow the PR
solver to solve easy instances, but not too long in order not to penalise the total solving
time when the PR solver is not able to solve the instance. In Fig.[6] we display cumulative
numbers of solved instances of the best PR solver, Glasgow, and the combined approach
(denoted RI+Glasgow for the non-induced case, and VF3+Glasgow for the induced case)
when the time limit ¢; is set to 0.1s. It shows us that this simple combination allows to
take the best of both solvers: before 0.1s, the cumulative number of solved instances
of RI+Glasgow (or VF3+Glasgow) is equal to the one of RI (or VF3), which is much
greater than the one of Glasgow (not displayed because the y-axis starts at 8, 000 and
Glasgow solves less than 8, 000 instances in 0.1s); after 0.1s, the cumulative number of
solved instances of RI+Glasgow (or VF3+Glasgow) grows faster than the one of RI (or
VF3) because Glasgow is able to solve instances which are not solved by RI (or VF3);
finally, after a few seconds, the cumulative number of solved instances of RI+Glasgow
(or VF3+Glasgow) is very close to the one of Glasgow as the delay of 0.1s due to the
run of RI (or VF3) is negligible.

Of course, this very simple approach could be enhanced by considering more solvers
(including more variants of each solver, using different ordering heuristics, for example).
In this case, we may gather all solvers in a portfolio, and use an algorithm selection
approach to dynamically select from the portfolio the solver which is expected to perform
best for each new SI instance to solve, as proposed by Kotthoff ez al. in [14].



7 Conclusion

This study has shown that there are many very easy SI instances which are solved in
a few milliseconds by modern solvers, and that some of these instances may involve
very large graphs with thousands of nodes. However, there are still small instances
which cannot be solved within a reasonable amount of time by any of these solvers. It
is important to evaluate solvers on these hard instances too as they do appear in real
applications, though they are less frequent than easy instances.

A promising research direction for solving hard instances is to exploit multiple
cores, and parallel SI solvers have been introduced in [/1}3}|/16]], for example. A special
attention should be paid on performance measures used to evaluate these approaches.
Indeed, measuring an average speed-up between a sequential and a parallel solver is
not very meaningful when considering NP-complete problems because speed-ups are
very different from an instance to another, and do not depend on instance sizes: for easy
instances, speed-ups are usually very low, whereas for hard instances it is not rare to have
super-linear speed-ups. Also, really hard instances are not solved within a reasonable
amount of time, and speed-ups cannot be computed in this case. Let us illustrate this
point on the parallel version of Glasgow (using 32 cores) described in [[1]. On easy
instances (solved in less than 1s by sequential Glasgow), the speed-up varies between 0.1
and 32, and the average speed-up is close to 1. On hard instances (that are not solved by
sequential Glasgow within 1s, but are solved within 1000 seconds), the speed-up varies
between 1 and 583, and the average speed-up is 14. However, parallel Glasgow is able
to solve instances which are not solved by sequential Glasgow within 1000s and, if we
include these instances, the average speed-up becomes greater than 19 (this is a lower
bound of the speed-up as we only have a lower bound of the time of sequential Glasgow
for unsolved instances). This shows us that the average speed-up does not give a clear
picture of solver performance. Better insights are given by scatter plots that compare
times on a per instance basis (as done in Fig. 5), or by the aggregate speed-up measure
introduced in [12]], which measures timeout ratio for solving a same number of instances.
For instance, Sequential Glasgow solves 14, 356 instances within 1000s, and the hardest
of these instances is solved in 939s. Parallel Glasgow solves 14, 356 instances within a
timeout of 19s, and this gives an aggregate speed-up of 939/19 = 49.
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