
Generalized Median Graph via Iterative

Alternate Minimizations

Nicolas Boria† and Sébastien Bougleux‡ and Benoit Gaüzère∗ and
Luc Brun†

† Normandie Univ, ENSICAEN, UNICAEN, CNRS, GREYC,
Caen, France

‡ Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC,
Caen, France

∗ Normandie Univ, INSA ROUEN Normandie, LITIS, Rouen,
France

June 27, 2019

Abstract

Computing a graph prototype may constitute a core element for clus-
tering or classification tasks. However, its computation is an NP-Hard
problem, even for simple classes of graphs. In this paper, we propose an
efficient approach based on block coordinate descent to compute a gen-
eralized median graph from a set of graphs. This approach relies on a
clear definition of the optimization process and handles labeling on both
edges and nodes. This iterative process optimizes the edit operations to
perform on a graph alternatively on nodes and edges. Several experiments
on different datasets show the efficiency of our approach.

1 Introduction

In a wide variety of scientific domains, attributed graphs provide a powerful
structure to represent, process and analyze data. However, determining fun-
damental tools such as a distance or an average graph is non trivial. Given a
space G of attributed graphs, Graph Edit Distance (GED) is a natural choice
for comparing graphs [2, 16]. It measures the minimal amount of distortion
needed to transform a graph into another by means of edit operations. It can
be defined as a minimal-path problem which relies on a cost function acting as
a metric in G, and rewritten as a special quadratic assignment problem close
to the graph matching problem. Computing Graph Edit Distance is NP-Hard
and still cannot be solved in a reasonable time for graphs exceeding a dozen of

1

ar
X

iv
:1

90
6.

11
00

9v
1

 [
cs

.C
V

]
 2

6
Ju

n
20

19

vertices, even for simple cost functions. Therefore, several strategies have been
explored to provide tight upper-bounds in polynomial time [16]. Computing a
representative of a set of graphs G ⊂ G is even more difficult. It commonly con-
sists in finding a generalized median graph, ie. a graph Ḡ ∈ G that minimizes
the sum of distances (SOD) to all the graphs in G [10]:

Ḡ ∈ arg min
G∈G

∑
G′∈G

d(G,G′) (1)

where d : G × G → R+ denotes Graph Edit Distance. Exact methods are re-
stricted to labeled graphs with particular cost functions or datasets containing
a small total number of vertices [5]. To estimate median graphs in a reason-
able computational time, several methods reduce the SOD by a local search
around an initial candidate graph, by genetic search [10], greedy search based
on partitioning vertices of different graphs [9], greedy adaptive search [13], or
linearization and discrete optimization [12]. A different strategy is based on
graph embedding [8, 7, 6, 14, 3], usually with distances between graphs as co-
ordinates. A representative is more easily computed within this space. Then
a median graph is reconstructed by going back to the original space of graphs.
While these approaches are able to tackle the complexity of the previous ones,
the link with the definition of a generalized median graph is not trivial and
difficult to analyze. Other approaches use the relationship between common-
labeling and the median graph to derive bounds on the SOD [15], or extend the
concept of representative to correspondences between graphs [11].

In this paper, we propose to estimate a generalized median graph by a block
coordinate descent that iterates two minimization steps from an initial candidate
(Sec. 3): one for updating the SOD w.r.t. edges and attributes on nodes and on
edges, and the other w.r.t. distances. The order of the resulting graph is fixed
before the descent process by the order of the initial candidate. This candidate
is set to a set-median, i.e. a graph of G minimizing the SOD (G restricted to G
in Eq. 1). While the first step of the descent shares similarities with the update
presented in [10], the update rules are not the same, and any algorithm can be
used to estimate GED in the second step or for initialization. The first empirical
results on two datasets (Sec. 4) show on the one hand that the proposed method
systematically reduces the SOD associated with the initial candidate, i.e. a set-
median, and on the other hand that the accuracy of the approximate GED has
more impact on the descent than on the computation of a set-median. The
following section introduces the expressions we use to facilitate the derivation
of the proposed algorithm.

2 Graph Transformations and Graph Edit Dis-
tance

We consider simple undirected attributed graphs. An attributed graph G of
order n can be encoded by a triplet (ϕ,A,Φ) (Fig. 1). The n-tuple ϕ = (ϕi)i

2

G

4

2 3

1

ϕ = (1, 2, 2, 3)

Φ =

0 0 0 3
0 0 1 2
0 1 0 3
3 2 3 0

G’

1

2

3

ϕ′ = (1, 2, 2)

Φ′ =

0 0 4
0 0 1
4 1 0

1 432 5

1 2 3 4

G’

G

π = (1, 3, 2, 4)
π′ = (1, 3, 2)

Figure 1: Labeled graphs (label 0 if no edge) and a transformation (π, π′) of their
vertices. Induced operations on edges: φ2,3 = φ3,2 substituted by φ′3,2 = φ′2,3,
(1, 4), (2, 4), (3, 4) removed from G, (1, 2) inserted in G from (1, 3) in G′ with
φ1,2 = φ2,1 = φ′1,3.

associates an attribute (or feature) ϕi of a space Fv to each integer i ∈ [n] =
{1, . . . , n} (vertices are represented by the set [n]). A ∈ {0, 1}n×n is the vertex-
vertex adjacency matrix of G, i.e. ai,j = 1 if there is an edge (i, j), else ai,j = 0.
Φ = (φi,j)i,j associates an attribute φi,j of a space Fe to each pair (i, j) ∈
[n] × [n]. When (i, j) is not an edge, φi,j can be equal to any value, it does
not affect the following expressions. Obviously, A and Φ are symmetric. Let G
be the space of all attributed graphs for Fv and Fe fixed. In this paper, each
space of attributes is restricted to a finite set of positive integer labels, or to the
Euclidean space.

A graph G = (ϕ,A,Φ) of order n can be transformed into a graph G′ =
(ϕ′, A′,Φ′) of order n′ by applying a composition of elementary transformations,
a.k.a. edit operations, to G. An edit operation transforms a graph into another
by either removing an element (a vertex or an edge), substituting an attribute
attached to an element by another attribute, or by inserting an element and its
attribute (between two existing vertices for edges). Moreover, if each element
of both graphs is assumed to be involved in exactly one edit operation, the
number of operations is minimized, and the transformation of G into G′ is
fully described by the transformation of the vertices of G into the ones of G′.
Here, this transformation, a.k.a. error-correcting matching [2, 16], is defined
as a pair (π, π′) ∈ [n′ + 1]n × [n + 1]n

′
so that πi = k ∈ [n′] ⇔ π′k = i ∈ [n]

(Fig. 1). Each vertex i of G is either substituted by a vertex k of G′ (πi = k and
π′k = i), or removed (πi = n′ + 1). Each vertex k of G′ that is not substituted
to a vertex of G is inserted (π′k = n + 1). The transformation of the edges of
G into the ones of G′ is induced by the transformation of the vertices. The
set {(i, j) ∈ [n] × [n] | ai,j = 1 ∧ πi ∈ [n′] ∧ πj ∈ [n′] ∧ aπi,πj = 1} defines
the substituted edges, the set {(i, j) ∈ [n] × [n] | ai,j = 1 ∧ ((πi ∈ [n′] ∧ πj ∈
[n′] ∧ aπi,πj = 0) ∨ πi = n′ + 1 ∨ πj = n′ + 1)} defines the removed edges, and
the set {(k, l) ∈ [n′] × [n′] | a′k,l = 1 ∧ ((π′k ∈ [n] ∧ π′l ∈ [n] ∧ aπ′k,π′l = 0) ∨ π′k =
n+ 1 ∨ π′l = n+ 1)} defines the inserted edges. Since π′ can be obtained from
π, we omit π′ for simplicity, and we denote by Π(G,G′) all the transformations
of G to G′.

A transformation π? ∈ Π(G,G′) is said to be minimal if its cost is minimal,

3

i.e. if c(π?, G,G′) = minπ∈Π(G,G′) c(π,G,G
′), with c(π,G,G′) = cv(π, ϕ, ϕ

′) +
1
2ce(π,A,Φ, A

′,Φ′) the cost for transforming G into G′ using π, and

cv(π, ϕ, ϕ
′) =

n∑
i=1

δπi cvfs(ϕi, ϕ
′
πi) + (1− δπi)cvr +

n′∑
k=1

(1− δπ′k) cvi (2)

ce(π,A,Φ, A
′,Φ′) =

∑n
i=1

∑n
j=1 δπiπj ai,j a

′
πi,πj cefs

(
φi,j , φ

′
πiπj

)
+ cer

∑n
i=1

∑n
j=1 δπiπjai,j(1− a′πi,πj) + (1− δπiπj)ai,j

+ cei

∑n
i=1

∑n
j=1 δπiπj (1− ai,j)a′πiπj + cei

∑n′

k=1

∑n′

l=1(1− δπ′kπ′l)a
′
k,l

(3)

the costs for transforming attributed vertices and edges, respectively. δπi = 1
if πi ∈ [n′], else 0, and δπiπj = δπiδπj . Functions cvfs : Fv × Fv → [0,+∞) and
cefs : Fe × Fe → [0,+∞) measure costs to substitute vertices and edges. In this
paper, the costs for removing and inserting elements are restricted to positive
constants, denoted cvr, cvi, cer, cei. When any substitution of elements is no more
expensive than removing and inserting these elements, Graph Edit Distance
(GED) between G and G′ is equal to the cost of a minimal transformation [16]:
d(G,G′) = minπ∈Π(G,G′) c(π,G,G

′). This case is considered in the sequel.

3 Estimating a Generalized Median Graph

Given a set of graphs G = {Gp}p ⊂ G, with Gp = (ϕp, Ap, φp) of order np, a
generalized median graph Ḡ = (ϕ̄, Ā, φ̄) ∈ G of G minimizes the sum of distances
(SOD) to the graphs of G [10, 5]: s(Ḡ,G) = minG∈G s(G,G), with s(G,G) =∑
Gp∈G d(G,Gp) =

∑|G|
p=1 minπp∈Π(G,Gp) c(πp, G,Gp). We propose to use a block

coordinate descent to estimate both Ḡ and the minimal transformations (πp)p.

3.1 Proposed algorithm

First, Ḡ is initialized to a set-median of G, i.e. Ḡ = arg minGp∈G s(Gp,G). It
can be computed in O(a|G|2) time [5], where a is the complexity of the algo-
rithm used for computing or estimating GED. This also provides the minimal
transformations (π̄p)p from Ḡ to the graphs of G. The order n̄ of Ḡ is then fixed,
i.e. considered as a constant in the optimization process. Then, (ϕ̄, Ā, Φ̄) and
(π̄p)p are alternatively updated as follows:

Ḡ = (ϕ̄, Ā, Φ̄)← arg min
ϕ∈Fn̄v

A∈{0,1}n̄×n̄

Φ∈Fn̄×n̄e

|G|∑
p=1

cv(π̄p, ϕ, ϕp) + 1
2ce(π̄p, A,Φ, Ap,Φp) (4)

∀p ∈ {1, . . . , |G|}, π̄p ← arg min
πp∈Π(Ḡ,Gp)

c(πp, Ḡ, Gp) (5)

until convergence, that is, until a stability is reached both in Ḡ and (π̄p)p. The
resolution of the minimization of the sum of distances when the transformations

4

are fixed (Eq. 4) mainly depends on the nature of Fv and Fe, as well as the form
of the cost functions cvfs and cvef. This is detailed later in this section, in
particular it can be solved in O(n̄2|G|) time under some conditions. The update
of the transformations (Eq. 5) consists in solving |G| times GED problem, so in
O(a|G|) time. Since the order n̄ is fixed, and GED can usually be only estimated,
the algorithm may not converge to the true generalized median graph.

We assume that an algorithm for computing GED is given, and we focus on
the minimization of the sum of distances w.r.t. the graph (Eq. 4). It can be
decomposed into two independent minimizations as long as the attributes ϕp
and Φp are independent for each p, that we consider in this paper:

ϕ̄← arg min
ϕ∈Fn̄v

sv(ϕ), (Ā, Φ̄)← arg min
A∈{0,1}n̄×n̄

Φ∈Fn̄×n̄e

se(A, φ) (6)

with sv(ϕ) =
∑|G|
p=1 cv(π̄p, ϕ, ϕp) and se(φ,A) =

∑|G|
p=1 ce(π̄p, A, φ,Ap, φp). The

minimization of each term is detailed in the two following sections. Note that
some results are already presented in [10], in particular for vertices. There are
obtained in a different way, allowing to take into account more easily different
spaces of attributes and cost functions associated to edit operations.

3.2 Updating vertex attributes

Only the cost function cvfs depends on vertex attributes in the expression of
cv (Eq. 2). So the attributes ϕ̄ in Eq. 6 are updated by solving the equivalent
problem arg minϕ∈Fn̄v

∑n̄
i=1 fi(ϕi), with the function fi : Fv → R+ defined by

fi(ϕi) =
∑|G|
p=1 δπpi cvfs(ϕi, ϕ

p
πpi

). The objective function is a sum of positive and

independent terms fi, so the attributes are updated by:

∀i = 1, . . . , n̄, ϕ̄i ← arg min
ϕi∈Fv

fi(ϕi) (7)

The solution depends on Fv and on the cost function cvfs.
When attributes are labels (Fv ⊂ N), the cost for substituting a label x ∈

Fv by a label y ∈ Fv is defined as cvfs(x, y) = cvs(1 − δx,y), with cvs > 0 a
constant, i.e. 0 if the labels are the same, and cvs otherwise. Then fi can

be rewritten as fi(ϕi) =
∑|G|
p=1 δπpi cvs(1 − δϕi,ϕp

π
p
i

) = cvs(|Si| − h0
i (ϕi)), where

Si = {πpi |π
p
i ∈ [np], p = 1, . . . , |G|} is the set of vertices that are substituted to i

by the mappings πp, and h0
i : Fv → {0, . . . , |G|} ⊂ N, h0

i (ϕi) =
∑|G|
p=1 δπpi δϕi,ϕ

p

π
p
i

,

counts the number of times i is substituted by a vertex having the same label
(with zero cost). So the attributes (Eq. 7) are updated by:

∀i = 1, . . . , n̄, ϕ̄i ← arg max
ϕi∈Fv

h0
i (ϕi) (8)

Notice that h0
i can be pre-computed in O(|G|) time for each label of Fv. The

labels are thus updated for all the vertices of Ḡ in O(n̄|G|) time at each iteration.

5

When Fv = Rm is equipped with the scalar product xT y =
∑m
k=1 xkyk

and the l2-norm ‖x‖ =
√
xTx, the cost for substituting an attribute x by an

attribute y is defined by cvfs(x, y) = ‖x − y‖2. In this case, we have: fi(ϕi) =∑|G|
p=1 δπpi ‖ϕi−ϕ

p
πpi
‖2. Any attribute ϕ̄i satisfies ∇fi(ϕ̄i) = 0, i.e. 2

∑
p δπpi (ϕ̄i−

ϕp
πpi

) = 0, or:

∀i = 1, . . . , n̄, ϕ̄i ←
1∑|G|

p=1 δπpi

|G|∑
p=1

δπpi ϕ
p
πpi

=
1

|Si|
∑
p∈Si

ϕp
πpi

(9)

In other words, the optimal attribute for a vertex i is given by the mean attribute
of the vertices substituted to i (the set Si defined in the previous paragraph).
Once more, updating all the attributes is done in O(n̄|G|) time at each iteration.

3.3 Updating edges and their attributes

The edges of Ḡ, and their attributes, are computed at each step of the descent
(Eq. 4) by minimizing se (Eq. 6). By removing the constant terms in se, i.e. in
ce (Eq. 3), it is easy to show that the minimization of se can be rewritten as:

arg min
A∈{0,1}n̄×n̄

Φ∈Fn̄×n̄e

se(A, φ) = arg min
A∈{0,1}n̄×n̄

Φ∈Fn̄×n̄e

n̄∑
i=1

n̄∑
j=1

fi,j(ai,j , φi,j) (10)

with the function fi,j : {0, 1} × Fe → R+ defined by:

fi,j(ai,j , φi,j) = ai,j
∑|G|
p=1 δπpi π

p
j
ap
πpi ,π

p
j
cefs(φi,j , φ

p
πpi ,π

p
j
)

+ cerai,j
∑|G|
p=1 1− δπpi πpj a

p
πpi ,π

p
j

+ cei(1− ai,j)
∑|G|
p=1 δπpi π

p
j
ap
πpi ,π

p
j

= ai,j
∑|G|
p=1 δπpi π

p
j
ap
πpi ,π

p
j
cefs(φi,j , φ

p
πpi ,π

p
j
)

+ cerai,j (|G| − |Si,j |) + cei(1− ai,j)|Si,j |

(11)

where Si,j = {(πpi , π
p
j) |πpi ∈ [np] ∧ πpj ∈ [np] ∧ apπpi ,πpj = 1, p = 1, . . . , |G|} is the

set of edges that are substituted to (i, j) by the mappings πp. The terms fi,j
are positive and independent from each others, so Eq. 10 is equivalent to:

∀(i, j) ∈ [n̄]× [n̄], i 6= j, (āi,j , φ̄i,j)← arg min
ai,j∈{0,1}
φi,j∈Fe

fi,j(ai,j , φi,j) (12)

Since ai,j can only take two values, if ai,j = 0 (no edge) then fi,j(0, φi,j) =
cei|Si,j | for any φi,j ∈ Fe, and if ai,j = 1 then fi,j(1, φi,j) is minimized for any

φ?i,j ∈ arg min
φi,j∈Fe

|G|∑
p=1

δπpi π
p
j
ap
πpi ,π

p
j
cefs(φi,j , φ

p
πpi ,π

p
j
) (13)

6

By consequence fi,j is minimized for φ̄i,j = φ?i,j and

āi,j =

{
1 if fi,j(1, φ̄ij) < cei|Si,j |
0 else

(14)

Solutions are finally obtained by solving Eq. 13. It depends on Fe and cefs.
When Fv ⊂ N and cefs(x, y) = ces(1 − δx,y), with ces > 0 a constant, is the

classical cost for labels, then fi,j (Eq. 11) becomes

fi,j(ai,j , φi,j) = ai,j
(
ces

(
|Si,j | − h0

i,j(φi,j)
)

+ cer (|G| − |Si,j |)
)
+(1−ai,j)cei|Si,j |

where h0
i,j(x) =

∑|G|
p=1 δπpi π

p
j
ap
πpi ,π

p
j
δx,φπp

i
,π
p
j

counts the number of times (i, j) is

substituted by an edge having the label x. Then Φ̄ and Ā are updated for all
(i, j) ∈ [n̄]× [n̄] by:

φ̄i,j ← arg max
x∈Fe

h0
i,j(x) (15)

and

āi,j ←

{
1 if h0

i,j(φ̄i,j) > |G| cer

ces
+ |Si,j |

(
1− cer+cei

ces

)
0 else

(16)

Each edge (i, j) is thus labeled with one of the most present labels among the
ones substituted to (i, j). Notice that h0

i,j : Fe → {0, . . . , |G|} and |Si,j | can be

computed in O(|G|) time. So Φ̄ and Ā are computed in O(n̄2|G|) time.
Unlabeled graphs can be considered as labeled with a unique label, e.g.

Fe = {1}. In this case cefs = 0 and h0
i,j = |Si,j |, so from Eq. 16 Ā can be

computed in O(n̄2|G|) time by:

āi,j ←
{

1 if |Si,j | > |G| cer

cer+cei

0 else
(17)

Remark. Similar results can be derived for directed graphs, other spaces of
attributes and other cost functions, for both vertices and edges. Due to limited
space, it is restricted here to the cases considered in the experiments.

4 Experimental results

In order to evaluate the validity of our method, the algorithm was implemented
in C++ and tested on the datasets Letter (HIGH) [16] and Monoterpenoides 1, a
chemical dataset, on a computer using an intel(R) i7-8700 CPU with 12 parallel
threads. The Monoterpenoides dataset has 286 graphs unevenly divided in 8
classes of at least 10 graphs. Both nodes and egdes are labeled, and the average
order is 11.003. Edit costs were set to cvs = ces = 1 and cvi = cei = cvr = cer =
3.

1GREYC Chemistry dataset: https://brunl01.users.greyc.fr/CHEMISTRY/

7

https://brunl01.users.greyc.fr/CHEMISTRY/

Algorithms Letter (HIGH) Monoterpenoides

1st phase 2nd phase SOD SM t(SM) SOD GM t(GM) SOD SM t(SM) SOD GM t(GM)

Bipartite Bipartite 142.69 0.01 87.80 6 ∗ 10−4 402.50 0.002 253.11 8 ∗ 10−4

Bipartite IPFP 142.87 0.013 87.61 0.003 398.01 0.002 128.45 0.179

IPFP IPFP 135.99 0.057 87.22 0.003 202.75 0.162 104.11 0.136

mBipartite mBipartite 142.04 0.014 89.47 9 ∗ 10−4 283.94 0.027 186.15 0.01

mBipartite mIPFP 142.19 0.018 87.66 0.013 281.14 0.031 83.11 0.545

mIPFP mIPFP 135.99 0.274 87.23 0.015 106.10 1.159 75.08 0.288

Table 1: SOD computed using different GED approximations.

Remember that, in a first phase, the proposed algorithm (Sec. 3.1) identifies
a set-median by computing all pairwise distances in the dataset. These distances
are computed through two heuristics: bipartite [16], and IPFP [1]. In a second
phase, the algorithm iterates the update of a triplet (ϕ̄, Ā, Φ̄) according to Eq. 6
(i.e. for vertices either Eq. 8 for Monoterpenoides or Eq. 9 for Letter, and for
edges, Eq.15–16 for Monoterpenoides or Eq. 17 for Letter), and the update of the
transformations π̄p using either bipartite or IPFP. We denote by mBipartite

and mIPFP the multistart counterparts of Bipartite, and IPFP [4], where the
number of randomly generated initializations was set to 40.

Table 1 sums up our results regarding SOD. In Letter and Monoterpenoides,
respectively 50 and 10 graphs were picked randomly in each class, and each
experiment was repeated 50 times. The results presented in Table 1 represent
the averages over all classes and all experiments. The four columns SOD SM,
t(SM), SOD GM and t(GM) list the SODs and computation times in seconds for
the set-median (SM), and the generalized median (GM). Note that t(GM) refers
to the computation time of the second phase only. Using state of the art GED
heuristics and making the most of the computed transformations π̄p to efficiently
perform the descent (conversely to many other approaches which use GED only
to evaluate candidate medians, without using the detailed transformations),
our algorithm produces median graphs with SODs much lower than the set-
medians’ with a very low running time. It is noteworthy that the time dedicated
to identify the set-median (first phase) is systematically higher than the one
dedicated to the generalized median (second phase). Indeed, |G|2 distances
must be computed in the first phase, while p|G| distances are computed in the
second phase, where p denotes the number of iterations before convergence.
In practice, we verified that, in most cases, p < 2 on the letter dataset, and
p < 7 on Monoterpenoides. Interestingly enough, in the hybrid versions of the
algorithm (using Bipartite in the first phase and IPFP in the second phase),
the alternate descent still produces median graph with reasonably low SOD
while starting from a set-median of lesser quality (i.e. with higher SODs).

Finally, note that the range between best and worst computed SODs is
particularily low on the Letter dataset, while it is rather high on the Monoter-
penoides dataset. This seems to indicate that approximate computed distances
are close to the optimum in Letter, and far from it in Monoterpenoides.

8

Picking random trainsets in each class 10% and 30% the size of the class,
set-medians and generalized medians were computed for each class, and the
classification accuracy of a 1-nn algorithm [5] was evaluated using as training
examples: (SM) only the set-median, (GM) only the generalized medians and
finally (TS) the whole trainset. Each experiment was repeated 50 times, and
Table 2 presents our results, giving the average preprocessing time pt (i.e. the
time spent in computation of set-medians and generalized medians), as well as
classification precisions (denoted by %) and times for all three training exam-
ples considered. Note that the GED heuristic used in the second phase of the
algorithms were also used in computing distances by the classifier.

Let us note that our approach competes with a 1-nn classification over the
whole trainset, especially when all the distances are computed with a more pre-
cise heuristic, such as mIPFP. Whenever a precise heuristic is used to compute
it, the generalized median appears as a better representative of the class than
the set-median. Obviously, classification times are much faster using only the
median graphs as training example.

In few cases, the classification accuracy enabled by set-medians is higher
than that enabled by generalized medians. This only happens in cases where
computed distances and edit-paths are looser approximations, i.e. this always
happens on the Monoterpenoides dataset with the mBipartite heuristic used
in the initialization phase.

5 Conclusion

We proposed an innovative general method to compute the generalized median
graph based on an alternate gradient descent. We showed its efficiency through
experiments on two datasets using different edit-cost structures. Computed
graphs have much lower SODs than set-medians, and can efficiently be used as
representatives in a clustering framework. Quality of computed graph median
increases when using accurate rather than fast GED approximation algorithms
as sub-routines, especially in the alternate descent phase, while the initializa-
tion phase may use different GED heuristics to reach different time/quality
compromises. Future developments regarding this promising method include
the extension to new edit-cost structures, as well as the possibility to modify
the order of the median graph during the optimization process.

Acknowledgments. This work is supported by Région Normandie through
RIN AGAC project.

References

[1] Bougleux, S., Gaüzère, B., Brun, L.: Graph edit distance as a quadratic
program. In: International Conference on Pattern Recognition. pp. 1701–
1706 (2016). https://doi.org/10.1109/ICPR.2016.7899881

9

Letter (HIGH) Dataset

TS 1st phase 2nd phase pt % SM t(SM) % GM t(GM) % TS t(TS)

10%
mBipartite mBipartite 0.023 76.42 0.325 82.82 0.325 83.01 5.275

mBipartite mIPFP 0.195 77.40 5.857 84.16 5.771 83.30 110.48

mIPFP mIPFP 0.447 78.24 5.951 84.60 5.801 82.95 111.84

30%
mBipartite mBipartite 0.181 79.94 0.251 84.24 0.250 87.24 11.44

mBipartite mIPFP 0.878 81.83 4.323 86.06 4.234 86.86 239.14

mIPFP mIPFP 3.437 81.59 4.316 86.08 4.245 86.86 240.96

Monoterpenoides Dataset

TS 1st phase 2nd phase pt % SM t(SM) % GM t(GM) % TS t(TS)

10%
mBipartite mBipartite 0.054 32 0.984 29.44 0.957 51.86 3.830

mBipartite mIPFP 1.586 53.38 47.96 57.49 51.03 60.69 186.85

mIPFP mIPFP 2.044 54.06 47.31 62.38 48.01 60.69 187.83

30%
mBipartite mBipartite 0.373 36.39 0.747 34.28 0.732 67.92 8.571

mBipartite mIPFP 5.148 54.06 36.54 67.79 37.07 75.82 419.81

mIPFP mIPFP 15.38 58.37 36.15 74.12 36.57 75.94 419.31

Table 2: Classification Results for Letter(HIGH) and Monoterpenoides datasets

[2] Bunke, H., Allermann, G.: Inexact graph matching for structural
pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983).
https://doi.org/10.1016/0167-8655(83)90033-8

[3] Chaieb, R., Kalti, K., Luqman, M.M., Coustaty, M., Ogier, J.M., Amara,
N.E.B.: Fuzzy generalized median graphs computation: Application to
content-based document retrieval. Pattern Recognition 72, 266–284 (2017).
https://doi.org/10.1016/j.patcog.2017.07.030

[4] Daller, É., Bougleux, S., Gaüzère, B., Brun, L.: Approximate graph edit
distance by several local searches in parallel. In: International Conference
on Pattern Recognition Applications and Methods. pp. 149–158 (2018).
https://doi.org/10.5220/0006599901490158

[5] Ferrer, M.: Theory and Algorithms on the Median Graph. Application
to Graph-based Classification and Clustering. Ph.D. thesis, Universitat
Autònoma de Barcelona (2008), http://hdl.handle.net/10803/5788

[6] Ferrer, M., Bardaj́ı, I., Valveny, E., Karatzas, D., Bunke, H.: Median graph
computation by means of graph embedding into vector spaces. In: Graph
Embedding for Pattern Analysis, pp. 45–71. Springer New York (2013).
https://doi.org/10.1007/978-1-4614-4457-2 3

10

http://hdl.handle.net/10803/5788

[7] Ferrer, M., Karatzas, D., Valveny, E., Bardaji, I., Bunke, H.: A generic
framework for median graph computation based on a recursive embed-
ding approach. Computer Vision and Image Understanding 115(7), 919–
928 (2011). https://doi.org/10.1016/j.cviu.2010.12.010

[8] Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.:
Generalized median graph computation by means of graph embed-
ding in vector spaces. Pattern Recognition 43(4), 1642–1655 (2010).
https://doi.org/10.1016/j.patcog.2009.10.013

[9] Hlaoui, A., Wang, S.: Median graph computation for graph clustering. Soft
Computing 10(1), 47–53 (2006). https://doi.org/10.1007/s00500-005-0464-
1

[10] Jiang, X., Munger, A., Bunke, H.: On median graphs: properties, algo-
rithms, and applications. IEEE Trans. on Pattern Analysis and Machine
Intelligence 23(10), 1144–1151 (2001). https://doi.org/10.1109/34.954604

[11] Moreno-Garćıa, C.F., Serratosa, F., Jiang, X.: Correspondence edit dis-
tance to obtain a set of weighted means of graph correspondences. Pattern
Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.08.027

[12] Mukherjee, L., Singh, V., Peng, J., Xu, J., Zeitz, M.J., Berezney, R.: Gen-
eralized median graphs and applications. Journal of Combinatorial Opti-
mization 17(1), 21–44 (2009). https://doi.org/10.1007/s10878-008-9184-7

[13] Musmanno, L.M., Ribeiro, C.C.: Heuristics for the generalized median
graph problem. European Journal of Operational Research 254(2), 371–
384 (2016). https://doi.org/10.1016/j.ejor.2016.03.048

[14] Nienkötter, A., Jiang, X.: Improved prototype embedding based general-
ized median computation by means of refined reconstruction methods. In:
Structural, Syntactic, and Statistical Pattern Recognition. pp. 107–117.
Springer International Publishing (2016). https://doi.org/10.1007/978-3-
319-49055-7 10

[15] Rebagliati, N., Solé-Ribalta, A., Pelillo, M., Serratosa, F.: On the relation
between the common labelling and the median graph. In: Structural, Syn-
tactic, and Statistical Pattern Recognition. pp. 107–115. Springer Berlin
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34166-3 12

[16] Riesen, K.: Structural Pattern Recognition with Graph Edit Distance.
Advances in Computer Vision and Pattern Recognition, Springer (2015).
https://doi.org/10.1007/978-3-319-27252-8

11

	1 Introduction
	2 Graph Transformations and Graph Edit Distance
	3 Estimating a Generalized Median Graph
	3.1 Proposed algorithm
	3.2 Updating vertex attributes
	3.3 Updating edges and their attributes

	4 Experimental results
	5 Conclusion

