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Parameter Selection for Regularized Electron
Tomography Without a Reference Image?

Yan Guo and Bernd Rieger

Department of Imaging Physics, Delft University of Technology
Lorentzweg 1, 2628CJ Delft, The Netherlands

{y.guo-3,b.rieger}@tudelft.nl

Abstract. Regularization has been introduced to electron tomography
for enhancing the reconstruction quality. Since over-regularization smears
out sharp edges and under-regularization leaves the image too noisy, find-
ing the optimal regularization strength is crucial. To this end, one can
either manually tune regularization parameters by trial and error, or
compute reconstructions for a large set of candidate values and compare
them to a reference image. Both are cumbersome in practice. In this pa-
per, we propose an image quality metric Q to quantify the reconstruction
quality for automatically determining the optimal regularization parame-
ter λ without a reference image. Specifically, we use the oriented structure
strength described by the highest two responses in orientation space to
simultaneously measure the sharpness and noisiness of reconstruction im-
ages. We demonstrate the usefulness of Q on a recently introduced total
nuclear variation regularized reconstruction technique using simulated
and experimental datasets of core-shell nanoparticles. Results show that
it can replace the full-reference correlation coefficient to find the optimal
λ. Moreover, observing that the curve of Q versus λ has a distinct max-
imum attained for the best quality, we adopt the golden section search
for the optimum to effectively reduce the computational time by 85%.

Keywords: Image quality assessment · Electron tomography · X-ray
spectroscopy · Image reconstruction.

1 Introduction

Electron tomography enables materials scientists to characterize nanoparticles in
three dimensions (3D) [12]. Scanning transmission electron microscopy (STEM)
has many imaging modes such as high-angle annular dark-field (HAADF) [12], in
which the sample under study is exposed to a focused electron beam and tilted
to obtain two-dimensional (2D) projections at different angles. In tomography,
the collection of projections is called a tilt-series, from which we can recon-
struct a 3D image that represents the sample. Although HAADF tomography

? This work is partially supported by the Dutch Technology Foundation STW, which
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can clearly reveal the inner structure of the sample, it cannot explicitly provide
its compositional information. To better understand samples with more com-
plex chemical compositions, spectral imaging techniques like energy dispersive
X-ray spectroscopy (EDS) [19] must be pursued. EDS tomography, however, is
currently hampered by slow data acquisition, resulting in a limited number of
elemental maps with low signal-to-noise ratio (SNR) [19].

Electron tomography is an ill-posed inverse problem whose solution is not
stable and unique. Therefore, l1 regularizations (e.g., total variation (TV) [8] and
higher order total variation (HOTV) [16] [17]) have been introduced to enhance
the reconstruction quality. However, regularizations, especially the common TV,
inevitably aggravate jaggy edges and staircase artifacts when being applied to
the (noisy) EDS datasets. To alleviate such artifacts yet still benefiting from
regularization, Zhong et al. incorporated the HAADF-STEM projections with
high SNR into EDS maps using total nuclear variation (TNV) to enforce anti-
/parallel gradients and common edges in joint reconstructions [21]. Like other
regularization-based approaches, TNV also requires a fine-tuning parameter λ
to determine the strength of regularization. The “best” λ is now chosen by
computing reconstructions for a large set of candidate values and comparing
them to a reference image with the correlation coefficient [21]. Since this is
infeasible if the reference is unavailable, we need to automatically measure the
reconstruction quality for determining the optimal λ.

So far, many no-reference quality assessment algorithms have been proposed
to set appropriate parameters for inverse problems. For instance, Zhu and Milan-
far developed a structure tensor based image content index to optimize denoising
algorithms [22]. Since this index is easy to compute, it has also been adopted to
determine the optimal regularization parameter for the TV reconstruction tech-
nique [11]. Applications dedicated to electron tomography also exist [9] [13]. For
example, Okariz et al. derived the optimal number of iterations for simultaneous
iterative reconstruction technique (SIRT) by statistically analyzing the edge pro-
file of reconstructions [13]. Furthermore, we recently proposed a non-distortion-
specific image quality metric to quantify the cross-atomic contamination and
noise so as to select the optimal weighting factor for bimodal tomography [9].
However, automatically selecting parameters for regularized electron tomogra-
phy has still not been widely investigated to the best of our knowledge.

In this paper, we aim to automatically find the optimal regularization param-
eter λ for TNV in the absence of a reference image. Specifically, we extend the
concept of image content index [22] to orientation space (OS) [5], in which we
develope a metric Q to assess the reconstruction quality regarding the sharpness
and noisiness. We demonstrate our Q on simulated and experimental datasets of
core-shell nanoparticles containing gold and silver. Results show that this OS-
based Q is more robust to noise than the original tensor-based version. Moreover,
it can replace the full-reference correlation coefficient used in [21] to determine
the optimal λ. In Section 2, we introduce the TNV-regularized reconstruction
technique and its relations to TV. Section 3 elaborates the orientation space as
prior work, followed by our quality assessment framework for parameter deter-
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mination. We present the experiments and results in Section 4, and summarize
our work in Section 5.

2 TNV Regularized Electron Tomography

Originally proposed for color images [10], total nuclear variation (TNV) has later
been applied to multi-channel spectral CT data for encouraging common edge
locations and a shared gradient direction among the different channels [15]. Let
us assume that an arbitrary 3D image A has a number of L channels, in which

An = [A
(1)
n , · · · , A(L)

n ]T ∈ RL×1 is the intensity value tuple of its n-th voxel.
Denote the Jacobian matrix of A as JnA [21], then TNV of A is

TNV(A) =
∑
n

‖JnA‖? (1)

where ‖JnA‖?, the nuclear norm of JnA, is the sum of its singular values [15].
When L = 1, TNV reduces to the isotropic (l2-norm) TV [21].

We consider a specimen with a number of E different chemical elements.
Each element e = 1, · · · , E has its EDS map p(e) ∈ RMe×1, and is associated
with one unknown reconstruction volume x(e) ∈ RN×1. Me is the number of
pixels in the map and N the number of discretized voxels to be reconstructed.

Similarly, let ph ∈ RMh×1 and xh ∈ RN×1 be the projection and volumetric
reconstruction of HAADF, respectively. Note that Mh, the number of pixels in
the HAADF projection, is not equal to Me if the HAADF tilt-series has more
acquisition angles than the EDS.

Given An as a two-channel image An = [x
(e)
n , xhn]T , i.e., one element of

interest plus HAADF, the TNV-regularized EDS and HAADF joint tomography
is [21]

x(e)∗,xh∗ = arg min
x(e),xh

∥∥∥p(e) −W(e)x(e)
∥∥∥2
2

+
∥∥ph −Whxh

∥∥2
2

+ λTNV(x(e),xh).

(2)
Extending An to multiple channels with more than one element is also possible,
as long as they share common edges [21]. In eq. (2), W(e) ∈ RMe×N and Wh ∈
RMh×N are the projection matrices of the EDS and HAADF, respectively, whose

entries w
(e)
mn and whmn are determined by the intersected area between the m-th

ray integral and n-th voxel. When the HAADF term is removed and An = x
(e)
n ,

eq. (2) reduces to the TV-regularized EDS tomography [8].
The parameter λ in eq. (2) determines the strength of TNV regularization.

A large λ may blur sharp edges and produce an over-smoothed reconstruction,
whereas a small one may make the regularization ineffective. To choose this
crucial parameter, Zhong et al. computed the reconstructions x(e)∗ for a large
set of λ (e.g., 100 values uniformly sampled from 10−3 to 101 on the logarithmic
scale) and compared them to a noise-free image using the correlation coefficient
[21]. Since this is infeasible in industry, we need a no-reference quality metric to
quantify the reconstruction quality so as to (blindly) determine the optimal λ.
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3 No-Reference Regularization Parameter Determination

Considering that the effect of regularization varies spatially, we propose to use
the local oriented structure strength (OSS) to measure the image quality; it
has large values for well structured patches containing lines and edges and small
values for blurry/noisy ones. In this section, we first introduce the concept of ori-
entation space [5], from which we then present our OSS-based quality assessment
framework.

3.1 Orientation Space

The linear orientation space of a 3D input image I(x) can be constructed as

Ih(x, φ, θ) = I(x) ∗ h(x;φ, θ) (3)

where x is the Cartesian coordinate tuple containing x, y and z. Operator ∗
denotes convolution. h(x;φ, θ) is obtained by rotating an elongated template
filter h(x) over angles φ and θ in a unit sphere. φ ∈ [0, 2π) is the counter-
clockwise angle measured from the positive x-axis in the xy-plane; θ ∈ [0, π)
is the angular distance from the positive z-axis [5]. One promising candidate
for h(x) is a Gabor filter [4]; however, it cannot produce a zero response to a
constant signal. Therefore, we use a similar filter which is zero for a constant
signal [5].

According to van Ginkel et al., the choice of the template filter h(·) is largely
free, as long as the scale and orientation can be dealt with separately [7]. To
this end, Faas and van Vliet constrained the Fourier transform of h(x) to have
separable radial and angular parts, that is, F{h(x)} = H(f) = Hrad(f)Hang(φ, θ)
where f is the polar coordinate tuple containing f , φ and θ in the Fourier domain
[5]. The radial component Hrad(f ; fc, bf ) is a Gaussian-like bandpass filter where
fc and bf are the central frequency and bandwidth of the Gaussian profile,
respectively. It reaches its maximum for f = fc and goes to zero for f = 0.
The angular component Hang(φ, θ;N) relies on a parameter N to control the
orientation selectivity, which is the number of orientations in the upper half
of the unit sphere formed by φ and θ. For details of mathematical expressions
see [5]. When θ is removed, H(f) becomes the 2D filterbank presented in [7].

Ih(x, φ, θ) has a number of peaks: the amplitude of the strongest peakA1(x) =
maxφ,θ |Ih(x, φ, θ)| captures highly regular regions with one single orientation;
the amplitude of the second strongest peak A2(x) highlights special patterns such
as deformation and bifurcation; the remaining peaks and noise are described by
a residue term R(x, φ, θ) which reflects chaotic regions [7]. Intuitively, a large A1

and a small A2 indicate a prominent elongated structure.

3.2 Reconstruction Quality Assessment Using Orientation Space

Our patch-based quality assessment algorithm consists of three steps: (i) con-
struct an orientation space; (ii) compute the local and (iii) global quality metrics,
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Fig. 1: Framework for reconstruction quality assessment. Details in Section 3.2.

see Fig. 1. Note that this method is currently implemented and discussed here
in 2D in a first result.

Construct Orientation Space For each reconstruction slice I(x, y), we
first construct its orientation space Ih(x, y, φ) using eq. (3). Then, we extract
the amplitudes of the two strongest peaks A1(x, y) and A2(x, y). Throughout
this paper, Ih(x, y, φ), A1(x, y) and A2(x, y) are computed with the open source
DIPimage toolbox [1]. Moreover, we set fc = 0.25, bf = 0.8fc and N = 8, so
that the template filter h(x, y; fc, bf , N) behaves as a line/edge detector [7].

Compute Local Metric Divide I(x, y) into a number of K non-overlapped
rectangular patches Pk, k = 1, · · · ,K; each goes through two modules: structure
detector and strength estimator. The structure detector determines whether Pk
contains any prominent structure (e.g., edges) by measuring its contrast. To
eliminate outliers such as noise, we define the contrast of Pk as the interquartile
range (75 percentile minus 25 percentile) rather than the full range (maximum
minus minimum) of its pixel intensities. We set is struk = 1 if the contrast of Pk
is larger than the average intensity of I(x, y), and is struk = 0 otherwise. The
strength estimator quantifies the saliency of patch Pk, for which the gradient
structure tensor has been considered earlier. For instance, Zhu and Milanfar
proposed the image content index [22]

q = s1
s1 − s2
s1 + s2

(4)

where s1 and s2 are the singular values of the 2×2 tensor matrix. In this paper,
we replace s1 and s2 by the amplitudes A1 and A2, because the latter two
are more sensitive to fine structures under noise [6]. Consequently, the oriented
structure strength of Pk is given by

OSSk = 1− geomean{qi}
mean{qi}

, qi = A1,i
A1,i −A2,i

A1,i +A2,i
, i ∈ Pk, (5)

in which geomean{·} and mean{·} represent the geometric- and arithmetic mean,
respectively. The underlying rationale is that the more “spiky” q is, the stronger
the oriented structure in Pk. Moreover, if Pk is constant or exactly at the
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boundary between two orientation fields (i.e., A1,i = A2,i = 0, or A1,i = A2,i,
∀i ∈ Pk [7]), we set OSSk = 0. Finally, we compute the local quality metric by
multiplying the outputs of the two independent modules: Qk = is struk×OSSk.

Compute Global Metric We define the global quality metric Q as the
geometric mean of all nonzero Qk, that is, Q = geomean{Qk}, Qk 6= 0, k =
1, · · · ,K. We do not consider the arithmetic mean because it (unwanted) gives
higher weight to Qk with larger numeric range.

4 Experiments and Results

In this section, we demonstrate that our quality metric Q can select a close-
to-optimal λ for the TNV-regularized reconstruction technique. Hereinafter, we
consider simulated and experimental datasets of core-shell nanoparticles contain-
ing gold (Au) in the core and silver (Ag) in the shell. These two chemical elements
have distinct atomic numbers (ZAu = 79, ZAg = 47), and hence can produce high
Z-contrast HAADF-STEM projections for the TNV to augment EDS maps.
Moreover, the TNV-regularized tomography was realized by Douglas-Rachford
primal-dual splitting algorithm with the operator discretization library [2]. We
set 400 iterations to guarantee convergence, and sampled 100 points for λ which
were uniformly distributed between 0.001 and 1.0 on the logarithmic scale.

4.1 Simulated Dataset

AuAg

xy
z

(a) Atomic design

10 nm

(b) HAADF (c) EDS map

Fig. 2: (a) Atomic design of a core-shell nanoparticle consisting of gold (Au,
yellow) and silver (Ag, white). (b) Simulated HAADF-STEM projection and (c)
superposed EDS map at 7.5◦.

To begin with, we simulated a noise-free multislice dataset using a AuAg
nanoparticle in a box with a size of 40 nm× 40 nm× 40 nm, see Fig. 2(a). For
details of simulation see [3]. HAADF-STEM projections and EDS maps with
a size of 128 pixel × 128 pixel (≈ 4Å/pixel) were simulated in every 2.5◦ over
[0◦, 180◦). We used a focused electron beam normalized to an intensity of 1, a
convergence angle of 10 mrad, and a detector with an inner angle of 90 mrad
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and outer 230 mrad. Since we did not include any (spherical) aberration, we set
the accelerating voltage to 120 kV rather than 200 kV [19] for a broader beam.

Then, we introduced several post-processing steps to make this noiseless
dataset more realistic. HAADF-STEM projections were blurred by Gaussian
smoothing (σ = 1.0 pixel), and corrupted by Poisson noise with a mean of
the number of electron counts (up to 105 per pixel) and Gaussian noise with a
standard deviation of 0.2. Projections suffering from the channelling effect were
removed [18]. For EDS maps, we set the maximum X-ray count per pixel to 4
for Au and 3 for Ag, so that the total number of X-ray counts per angle were
comparable to real experimental data [19]. Since EDS maps were much noisier,
we employed a Gaussian filter (σ = 1.0 pixel) for denoising. Finally, we sub-
sampled the EDS tilt-series by a factor of 2, as in practice the number of EDS
maps is typically smaller than HAADF projections due to acquisition time. The
resulting HAADF-STEM and EDS data are shown in Fig. 2.

y

x
15 nm

Au

6 8

10 12

1 4

11

Ag

(a) Ground truth

13 16

(b) λ = 0.001 (c) λ = 0.1233 (d) λ = 0.1748

Fig. 3: Au (upper) and Ag (lower) xy-slices for the simulated dataset at z = 24.
(a) Ground truth, hand-segmented from SIRT reconstructions with 100 itera-
tions using 72 elemental maps between [0, 180◦); (b)-(d) TNV reconstructions
with regularization parameter λ ∈ {0.001, 0.1233, 0.1748}. The size of the recon-
struction volume is 128× 128× 128 pixels.

Fig. 3 illustrates the xy-slices of Au and Ag at z = 24, which are recon-
structed with TNV using different λ. Two binary images in Fig. 3(a) are the
ground truth segmented from SIRT reconstructions with 100 iterations given
the full-view noiseless EDS maps. Fig. 3(b) shows 16 patches with four different
types of structures: foreground (P11), background (P4, P16), background with
streak artifacts (P1, P13), and edge (P6, P8, P10, P12). For λ = 0.001, a weak
regularization leads to an overall noisy reconstruction. However, when λ is in-
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Fig. 4: Oriented structure strength OSSk and local quality metric Qk versus λ for
four patches Pk in Fig. 3. P1: background with streak artifacts; P4: background;
P6: edge; P11: foreground. Results are averaged over ten noise realizations.

creased up to a certain level (e.g., λ = 0.1748), strong regularization starts to
nonuniformly degrade the sharp edges, see yellow circles in Fig. 3(d).

Fig. 4(a) plots the oriented structure strength (OSS) as a function of λ for
four patches selected from Fig. 3. OSS curves of the background patches P1 and
P4 (w/ and w/o perceptible streak artifacts) are decreasing when λ is increas-
ing, because stronger regularization can more effectively suppress the noise. In
addition, OSS curves of the edge (P6) and foreground (P11) patches are similar,
whereas the former has a clearer unique maximum. Fig. 4(b) shows the corre-
sponding local quality metrics, in which only Q6 with is stru6 = 1 is nonzero.

Fig. 5 depicts our main result, in which we plot the global quality metric Q
and correlation coefficient (CC) as a function of λ. Q is derived either from our
orientation space (OS) or from the structure tensor (ST) [22]; CC is calculated
by comparing reconstructions to the binary segmentation of the noiseless SIRT
reconstruction. It can be observed that our OS-based Q has a very good agree-
ment with CC for the optimal λ, i.e., λ values around the maxima of OS-based
Q and CC are almost the same. Moreover, our OS-based Q has a higher dynamic
range than the ST-based version especially for Ag, see Fig. 5(b). As a result, it
would be more robust to small fluctuations such as noise in practice.

Note that TNV is an iterative technique that takes significant amount of time
for reconstruction. For example, it took 10 hours to compute reconstructions for
100 different λ. Many efficient one-dimensional search algorithms are available
for time reduction, and we choose the golden section search [14]. This algo-
rithm assumes that the objective function is unimodal within a certain range,
and evaluates it at triples of points whose values form the golden ratio [14].
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Fig. 5: Global quality metric Q and correlation coefficient versus λ for the sim-
ulated dataset at z = 24. Q is derived either from the orientation space (OS)
or structure tensor (ST); CC is obtained by comparing reconstructions to the
ground truth in Fig. 3(a). Results are averaged over ten noise realizations.

Since the golden section search can narrow the original 100 values of λ down
to no more than 15, it would effectively reduce the total computational time by
approximately 85%.

4.2 Experimental Dataset

50 nm

-45o +45

(a) HAADF-STEM

AuAg-45o +45º

(b) EDS map

Fig. 6: Experimental (a) HAADF-STEM projections and (b) superposed EDS
maps of a Au-Ag core-shell nanoparticle at −45◦ and +45◦.

Our experimental AuAg core-shell nanoparticle was scanned in a FEI Tecnai
Osiris microscope which was operated with an accelerating voltage of 120 kV
and equipped with four Super-X energy dispersive silicon drift detectors [20].
HAADF-STEM projections with a size of 300 pixels× 300 pixels were acquired
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at 31 tilt angles, ranging from −75◦ to +75◦ with an increment of 5◦. In addition,
one X-ray spectral image has also been recorded at each angle for 300 seconds.
The raw dataset was then processed before reconstruction. The HAADF-STEM
tilt-series was aligned using cross-correlation; X-ray spectral images were de-
noised by principal component analysis and deconvolved into two equi-sized el-
emental maps, one for Au and the other for Ag [20]. Fig. 6 gives an example
of the post-processed experimental dataset, for which we hand-segmented the
HAADF reconstruction to obtain the ground truth of EDS.

Fig. 7 shows the variation of the optimal λ w.r.t. different slices. λ values
found by our no-reference metric Q and the full-reference metric CC are com-
parable, considering that the search space spans over 3 orders of magnitude.
Moreover, golden section search and exhaustive search lead to the same λ most
of the time, though the former may terminate at the local maximum before
reaching the global one (e.g., slice number 81 in Fig. 7(a)). Note that Fig. 7(b)
has two “outliers”, and we show the details of slice number 91 in Fig. 8. It is
obvious that the Ag reconstruction computed from Q maintains finer structure
than the one from CC, especially at the edges of the outer ring. From Fig. 8(d)
we can see that the curve of CC strangely “jumps” after a certain λ, even though
the underlying structures have already been smeared out. This shows that even
using CC as a metric to choose the optimal λ for the TNV-regularized electron
tomography is not always reliable.

80 100 120 140 160 180 200 220

Slice index

0.03

0.04

0.05

0.06
Exhaustive search

Golden section search

Correlation coe!cient

(a) Au

80 100 120 140 160 180 200 220

Slice index

0

0.1

0.2

0.3

“outliers”

(b) Ag

Fig. 7: Optimal regularization parameter λ versus slice index for the experimental
dataset. The size of the reconstruction volume is 300× 300× 300 pixels.

5 Discussion and Conclusion

In this paper, we developed a no-reference quality metric Q to score the ori-
ented structure strength of reconstruction images for detecting over- and under-
regularization. Based on simulated and experimental datasets of AuAg core-shell
nanoparticles, we demonstrated that our Q can replace the full-reference correla-
tion coefficient to automatically determine the optimal regularization parameter
λ for the recently proposed TNV reconstruction technique. Since the original
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Fig. 8: (a) Ag TNV reconstructions at z = 91 with λ found by quality metric Q
and correlation coefficient (CC), compared to the hand-segmented ground truth
(GT). The corresponding curves of Q and CC versus λ are shown in (b).

experimental dataset was noisy, we further binned the tilt-series by a factor of
3 to increase the SNR. Consequently, the size of the reconstruction volume was
reduced from 300× 300× 300 pixels to 100× 100× 100 pixels, for which Q still
achieved a relatively high accuracy in terms of parameter determination. More
interestingly, the optimal λ found in this case became larger, probably because
the dataset with less noise did not produce severe paintbrush/staircase artifacts
under a stronger regularization.

Compared to the iterative TNV reconstruction, time spent for the quality
assessment is minor, e.g., 10 hours versus 5 minutes for 100 different λ on a
desktop equipped with eight Intel Xeon X5550 CPU cores (24 GB memory)
and one NVIDIA GeForce GTX670 GPU (4 GB memory). Considering that the
curve of reconstruction quality versus λ is unimodal with a distinct maximum, we
adopted the golden section search to “predict” the optimal λ, which effectively
reduced the total computational time (reconstruction plus assessment) by 85%.

As for future work, we consider testing the applicability of our quality metric
to other iterative reconstruction techniques with (e.g., TV and HOTV) and/or
without (e.g., SIRT) regularizations. Moreover, we will also extend the current
framework to 3D.
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