
An efficient solution for semantic segmentation:
ShuffleNet V2 with atrous separable

convolutions

Sercan Türkmen[0000−0002−3692−5019] and Janne Heikkilä[0000−0003−0073−0866]

Center for Machine Vision Research, University of Oulu, Oulu, Finland
sercanturkmen@outlook.com, janne.heikkila@oulu.fi

Abstract. Assigning a label to each pixel in an image, namely seman-
tic segmentation, has been an important task in computer vision, and
has applications in autonomous driving, robotic navigation, localiza-
tion, and scene understanding. Fully convolutional neural networks have
proved to be a successful solution for the task over the years but most
of the work being done focuses primarily on accuracy. In this paper, we
present a computationally efficient approach to semantic segmentation,
while achieving a high mean intersection over union (mIOU), 70.33% on
Cityscapes challenge. The network proposed is capable of running real-
time on mobile devices. In addition, we make our code and model weights
publicly available.

Keywords: semantic image segmentation · real-time · efficient · fast ·
lightweight · mobile

1 Introduction

Semantic segmentation is a major challenge in computer vision that aims to
assign a label to every pixel in an image.[6,16] Fully convolutional networks are
shown to be the state-of-art approach in semantic segmentation tasks over the
recent years and offer simplicity and speed during learning and inference[17].
Such networks have a broad range of applications such as autonomous driving,
robotic navigation, localization, and scene understanding.

These architectures are trained by supervised learning over numerous images
and detailed annotations for each pixel. Data sets that offer semantic segmenta-
tion annotations on a rich variety of objects and stuff categories have emerged
such as COCO[16], ADE20K[25], Cityscapes[8], PASCAL VOC[10], thus opening
new windows in the field.

Computationally efficient convolutional networks have been gaining momen-
tum over the recent years but the segmentation task is still an open problem. Pro-
posed networks for the semantic segmentation task are deep and resource hungry
because of their purpose of achieving the highest accuracy such as [4,6,24,20].
These approaches have high complexity and may contain custom operations
which are not suitable to be run on current implementations of neural network

ar
X

iv
:1

90
2.

07
47

6v
2 

 [
cs

.C
V

] 
 3

 A
pr

 2
01

9



2 S. Türkmen, J. Heikkilä

interpreters offered for mobile devices. Such devices lack the computation power
of specialised GPUs, resulting in very poor inference speed. Mobile capable ap-
proaches in the feature extraction task such as Mobilenet V2[21], ShuffleNet
V2[18] have motivated us to explore the performance of such architectures to be
used in this context.

In this paper, we explore ShuffleNet V2[18], as the feature extractor with sim-
plified DeepLabV3+[6] heads and recently proposed DPC[4] architecture, and re-
port our findings of both model on scene understanding using Cityscapes[8] data
set. Furthermore, we present the number of floating point operations(FLOPs)
and on-device inference performance of each approach. Our contributions to the
field can be listed in three points:

1. We achieve state-of-art computation efficiency in the semantic segmenta-
tion task while achieving 70.33% mean intersection over union (mIOU) on
Cityscapes test set using ShuffleNet V2 along with DPC[4] encoder and a
naive decoder module.

2. Our proposed model and implementation is fully compatible with Tensor-
Flow Lite and runs real-time on Android and iOS-based mobile phones.

3. We make our Tensorflow implementation of the network, and trained models
publicly available at https://github.com/sercant/mobile-segmentation1.

2 Related Work

In this section, we talk about the current state-of-art in the task of semantic
segmentation, especially mobile capable approaches and performance metrics to
measure the efficiency of networks.

CNNs have shown to be the state-of-art method for the task of semantic seg-
mentation over the recent years. Especially fully convolutional neural networks
(FCNNs) have demonstrated great performance on feature generation task and
end-to-end training and hence is widely used in semantic segmentation as en-
coders. Moreover, memory friendly and computationally light designs such as
[13,21,23,18], have shown to perform well in speed-accuracy trade-off by taking
advantage of approaches such as depthwise separable convolution, bottleneck
design and batch normalization[14]. These efficient designs are promising for us-
age on mobile CPUs and GPUs, hence motivated us to use such networks as
encoders for the challenging task of semantic segmentation.

FCNN models for semantic segmentation proposed in the field have been the
top-performing approach in many benchmarks such as [16,8,10,25]. But these
approaches use deep feature generators and complex reconstruction methods
for the task, thus making them unsuitable for mobile use, especially for the
application of autonomous cars where resources are scarce and computation
delays are undesired [22].

1 DOI: https://doi.org/10.5281/zenodo.2620377

https://github.com/sercant/mobile-segmentation
https://doi.org/10.5281/zenodo.2620377


An efficient solution for semantic segmentation 3

(a) rate = 1 × 1 (b) rate = 2 × 2 (c) rate = 3 × 2 (d) rate = 2 × 4

Fig. 1. Atrous convolutions, also known as dilated convolutions, with a kernel size of
3 × 3 at different dilation rates.

In this sense, one of the recent proposals in feature generation, ShuffleNet
V2[18], demonstrates significant efficiency boost over the others while perform-
ing accurately. According to [18], there are four main guidelines to follow for
achieving a highly efficient network design.

1. When the channel widths are not equal, there is an increase in the memory
access cost (MAC) and thus, channel widths should be kept equal.

2. Excessive use of group convolutions should be avoided as they raise the MAC.
3. Fragmentation in the network should be avoided to keep the degree of par-

allelism high.
4. Element-wise operations such as ReLU, Add, AddBias are non-negligible and

should be reduced.

To achieve such accuracy at low computation latency, they point out two
main reasons. First, their guidelines for efficiency allow each building block to
use more feature channels and have a bigger network capacity. Second, they
achieve a kind of “feature reuse” by their approach of keeping half of the feature
channels pass through the block to join the next block.

Another important issue is the metric of performance for convolutional neural
networks. The efficiency of CNNs is commonly reported by the total number
of floating point operations (FLOPs). It is pointed out in [18] that, despite
their similar number of FLOPs, networks may have different inference speeds,
emphasizing that this metric alone can be misleading and may lead to poor
designs. They argue that discrepancy can be due to memory access cost (MAC),
parallelism capability of the design and platform dependent optimizations on
specific operations such as cuDNN’s 3 × 3 Conv. Furthermore, they offer to use
a direct metric (e.g., speed) instead of an indirect metric such as FLOPs.

Next, we shall examine the state-of-art on the semantic image segmentation
task by focusing on the computationally efficient approaches.

Atrous convolutions, or dilated convolutions, are shown to be a powerful tool
in the semantic segmentation task [5]. By using atrous convolutions it is possible
to use pretrained ImageNet networks such as [18,21] to extract denser feature
maps by replacing downscaling at the last layers with atrous rates, thus allowing
us to control the dimensions of the features. Furthermore, they can be used to



4 S. Türkmen, J. Heikkilä

enlarge the field of view of the filters to embody multi-scale context. Examples
of atrous convolutions at different rates are shown in Figure 1.

DeepLabV3+ DPC [4] achieves state-of-art accuracy when it is combined
with their modified version of Xception[7] backbone. In their work, Mobilenet
V2 has shown to have a correlation of accuracy with Xception[7] while having a
shorter training time, and thus it is used in the random search[2] of a dense pre-
diction cell (DPC). Our work is inspired by the accuracy that they have achieved
with the Mobilenet V2 backbone on Cityscapes set in [4], and their approach
of combining atrous separable convolutions with spatial pyramid pooling in [5].
To be more specific, we use lightweight prediction cell (denoted as basic) and
DPC which were used on the Mobilenet V2 features, and the atrous separable
convolutions on the bottom layers of feature extractor in order to keep higher
resolution features.

Semantic segmentation as a real-time task has gained momentum on pop-
ularity recently. ENet [19] is an efficient and lightweight network offering low
number of FLOPs in the design and ability to run real-time on NVIDIA TX1 by
taking advantage of bottleneck module. Recently, ENet was further fine-tuned
by [3], increasing the Cityscapes mean intersection over union from 58.29% to
63.06% by using a new loss function called Lovasz-Softmax [3]. Furthermore,
SHUFFLESEG[11], demonstrates different decoders that can be used for Shuf-
flenet, prior work to ShuffleNet V2, comparing their efficiency mainly with
ENet[19] and SegNet[1] by FLOPs and mIOU metrics but they do not men-
tion any direct speed metric that is suggested by ShuffleNet V2[18]. The most
comprehensive work on the search for an efficient real-time network was done
in [22] and they report that SkipNet-Shufflenet combination runs 15 frames per
second (fps) with an image resolution of 640 × 360 on Jetson TX2. This work
again, like SHUFFLESEG[11], is based on the prior design of the channel shuffle
based approach.

Our literature review showed us that the ShuffleNet V2 architecture is yet
to be used in semantic segmentation task as a feature generator. Both [22] and
SHUFFLESEG[11] point out the low FLOP achievable by using ShuffleNet and
show comparable accuracy and fast inference speeds. In this work, we exploit
improved ShuffleNet V2 as an encoder module modified by atrous convolutions
and well-proven encoder heads of DeepLabV3 and DPC in conjunction. Then,
we evaluate the network on Cityscapes, a challenging task in the field of scene
parsing.

3 Methodology

This section describes our network architecture, and the training procedures,
and evaluation methods. The network architecture is based upon the state-of-art
efficient encoder, ShuffleNet V2[18], and DeepLabV3[5] and DPC[4] heads built
on top to perform segmentation. Training procedure includes restoring from an
Imagenet[9] checkpoint, pre-training on MS COCO 2017[16] and Cityscapes[8]
coarse annotations, and fine-tuning on fine annotations of Cityscapes[8]. We



An efficient solution for semantic segmentation 5

769x769x3

Input
Image

49x49x464 49x49xn_classes

769x769x1

Segmentation
Result

ShuffleNet V2

Downsample x16 Upsample x16

DeeplabV3+ Encoder Bilinear Up + ArgMax

Fig. 2. General view of the network at 769x769 with output stride = 16.

then evaluate the trained network on Cityscapes validation set according to
their evaluation procedure in [8].

3.1 Network Architecture

In this section, we will give a detailed explanation of each step of the proposed
network. Figure 2 shows the different stages of the network and how the data
flows from the start to the end. We start with Shufflenet V2 feature extractor,
then add the encoder head (DPC or basic DeepLabV3), and finally use resize
bilinear as a naive decoder to produce the segmentation mask. The final down-
sampling factor of the feature extractor is denoted as output stride.

For the task of feature extraction, we choose Shufflenet V2 because of its suc-
cess for speed versus accuracy trade-off. Our selection for the depth multiplier
of ShuffleNet V2 is ×1 as it can be seen in the output channels column of Table 1.
Our decision was purely made by accuracy and speed results of this variation on
the ImageNet data set and we have not run experiments on different variations
of the depth multiplier. Although, one might choose lower values for this hy-
perparameter to achieve faster inference time by compromising on accuracy and
conversely higher values might result in a gain of accuracy in favour of inference
speed.

Figure 3 shows the building blocks of the feature extractor architecture in
detail. Each stage consists of one spatial downsampling unit and several basic
units. In the original implementation of Shufflenet V2[18], output stride goes
as low as 32. In our approach, entry flow, Stage2 and Stage3 of the proposed
feature extractor is implemented as in [18]. In the case of output stride = 16,
the last stage, namely Stage4, has been modified by setting stride = 1 instead
of 2 on the downsampling layer and the atrous rate of the preceding depth-wise
convolutions are set to network stride divided by output stride as described in
[5] to adjust the final downsampling factor of the feature extractor. However, in
the case of output stride = 8, stride and atrous rate modification starts from
Stage3. We choose to focus on output stride = 16 due to its faster computation
speed.

After ShuffleNet V2 features are extracted we employ the DPC encoder.
Figure 4 shows the design of the basic encoder head[5] and the DPC head[4].
The basic encoder head does not contain any atrous convolutions in its design
for lower complexity. On the other hand, DPC is using five different depthwise



6 S. Türkmen, J. Heikkilä

Channel Split

BN + RELU

1x1 Conv

BN

3x3 DWConv

BN + RELU

1x1 Conv

Concat

Channel Shuffle

(a) Basic unit

Channel Split

BN + RELU

1x1 Conv

BN

3x3 DWConv 
(stride = 2)

BN + RELU

1x1 Conv

Concat

Channel Shuffle

BN + RELU

1x1 Conv

BN

3x3 DWConv 
(stride = 2)

(b) Spatial downsampling unit

Fig. 3. Shufflenet V2 units (DWConv means depthwise convolution).

convolutions at different rates to understand features better. After the encoder
heads, as seen in Figure 5, features are reduced down to depth = 256, then to the
number of classes. Afterwards, a drop out layer with 0.9 probability of keeping
is applied.

For decoding, we are using the same naive approach as [5], where a simple
bilinear resizing is applied to upscale back to the original image dimensions. In
the case of output stride = 16, the upscaling factor is 16. In their later work,
DeepLabV3+[6], they propose an approach where features from earlier stages
(e.g. decoder stride of 4) are concatenated with the upsampled features of the
last layer where the upscaling factor is output stride divided by decoder stride
to preserve the finer details in the segmentation result. We have not included
this part as it adds more complexity and slowing down the inference time.

3.2 Training

Proposed feature extractor weights are initially restored from an ImageNet[9]
checkpoint. After that, we pre-train the network end-to-end on MS COCO[16].
Further pre-training was done on Cityscapes coarse annotations before we finalize
our training on Cityscapes fine annotations. During the training at each step
data augmentation was performed on the images by randomly scaling between



An efficient solution for semantic segmentation 7

BN + RELU

1x1 Conv

Concat

BN + RELU

1x1 Conv

Average Pool 2D

Resize Bilinear

(a) Basic encoder head.

3x3 DWConv 
(Rate 1x1)

3x3 DWConv 
(Rate 1x6) 

3x3 DWConv 
(Rate 6x21)

3x3 DWConv 
(Rate 18x15)

3x3 DWConv 
(Rate 6x3)

Concat

(b) DPC encoder head.

Fig. 4. Encoder head variants.

1x1 Conv  1x1 Conv Dropout Resize Bilinear ArgMax

Fig. 5. Exit flow.

0.5 and 2.0 with steps of 0.25, randomly cropping by 769 × 769 and randomly
flipping left and right.

Preprocessing For preprocessing the input images, we standardize each pixel
to [−1, 1] range according to Equation 1.

inputs× 2

255
− 1 (1)

MS COCO 2017 We pre-train the network on MS COCO as suggested in
[4,6,5]. Only the relevant classes to the Cityscapes task, which are person, car,
truck, bus, train, motorcycle, bicycle, stop sign and parking meter, were chosen
and other classes were marked as background. Also, we further filter the samples
by criteria of having a non-background class area of over 1000 pixels. This yields
us 69795 training and 2956 validation samples. Training was done end-to-end by
using a batch size of 16, output stride of 16, weight decay set to 4e−5 to prevent
over-fitting, and a “poly” learning rate policy as shown in Equation 2 where lr(k)

is the learning rate at step k, lrinitial set to 0.001 and power set to 0.9[5] for
60K steps using Adam optimizer[15](beta1 = 0.9, a2 = 0.999, epsilon = 10−8).

lr(k) = lrinitial

(
1 − k

max iter

)power

(2)



8 S. Türkmen, J. Heikkilä

Table 1. Proposed network architecture at output stride = 16. DLV3 denotes
DeepLabV3+.

Layer Output Size Kernel Stride Rate Repeat Output Channels

Image 769 × 769 3
S

h
u

ffl
eN

et
V

2

Conv2D 385 × 385 3 × 3 2
1 24

MaxPool 193 × 193 3 × 3 2

Stage 2
97 × 97 2 1 1

116
97 × 97 1 1 3

Stage 3
49 × 49 2 1 1

232
49 × 49 1 1 7

Stage 4
49 × 49 1 1 1

464
49 × 49 1 2 3

D
L

V
3 DPC 49 × 49 1 1 1 512

Conv2D 49 × 49 1 × 1 1 256
Conv2D 49 × 49 1 × 1 1 n classes
Bilinear Up 769 × 769 n classes
ArgMax 769 × 769 1

Table 2. Cityscapes validation set performance. GFLOPs is measured on image res-
olution of 640 × 360 × 3.

Method GFLOPs mIOU(%)

SkipNet-ShuffleNet[22] 2.0 55.5
ENet[22] 3.83 n/a
MobileNet V2 + Basic 4.69 70.7
MobileNet V2 + DPC 5.56 n/a

ShuffleNet V2 + Basic (Ours) 2.18 67.7
ShuffleNet V2 + DPC (Ours) 3.05 71.3

Cityscapes First, we pre-train the network further using 20K coarsely anno-
tated samples for 60K steps, following the same parameters that we used in
MS COCO training. Then, as the final step, we fine-tune the network for 120K
steps on finely annotated set (2975 train, 500 validation samples) with an initial
learning rate of 0.0001, a slow start at learning rate 1e−5 for the first 186 steps.
We found out that lowering the learning rate at the fine-tuning stage is crucial
to achieving good accuracy. Other parameters are kept the same as the previous
steps.

4 Experimental Results on Cityscapes

Cityscapes[8] is a well-studied data set in the field of scene parsing task. It
contains roughly 20K coarsely annotated samples, and 5000 finely annotated
samples which are split into 2975, 500 and 1525 for training, validation, and
testing respectively.



An efficient solution for semantic segmentation 9

Table 3. Comparison of class and category level accuracy on the test set.

Method mIOU Building Sky Car Sign Road Person Fence Pole Sidewalk Bicycle

SkipNet-MobileNet 61.52 86.19 92.89 89.88 54.34 95.82 69.25 39.40 44.53 73.93 58.15
Enet Lovasz 63.06 87.22 92.74 91.01 58.06 97.27 71.35 38.99 48.53 77.20 59.80

ShuffleNet V2+DPC(Ours) 70.33 90.7 93.86 93.95 66.93 98.11 78.47 50.93 51.47 82.46 67.48

Table 4. Comparison of class level accuracies efficient architectures on Cityscapes test
set.

Method Class IOU Class iIOU Cat. IOU Cat. iIOU

SegNet[1] 56.1 34.2 79.8 66.4
ShuffleSeg[11] 58.3 32.4 80.2 62.6
SkipNet-MobileNet[22] 61.52 35.16 82.00 63.03
Enet Lovasz[3] 63.06 34.06 83.58 61.05

ShuffleNet V2+DPC (Ours) 70.33 43.58 86.48 69.92

Our approach of combining ShuffleNet V2 with DeepLabV3 basic and DPC
head achieves both state-of-art mIOU and inference speed with the respective
GFLOPs counts. Table 2 shows the comparison of GFLOPs to mIOU perfor-
mance on the validation set. ShuffleNet V2 with basic DeepLabV3 encoder head,
having 2.18 GFLOPs, surpasses the SkipNet-ShuffleNet[22] which has similar
floating operations count by 12.2% gain on mIOU. On the other hand, DPC vari-
ation performs +0.6% more accurate than the Mobilenet V2 with basic heads,
which has 1.54 times more GFLOPs.

ShuffleNet V2 with DPC heads outperforms state-of-art efficient networks
on the Cityscapes test set. Table 3 shows that we make a gain of 7.27% mIOU
over the best performing ENet architecture. Furthermore, on each of the classes
highlighted here, ShuffleNet V2+DPC shows a great improvement. Also, as seen
in the Table 4, our approach outperforms the previous methods on the category
mIOU and instance level metrics.

We visualize the segmentation masks generated both by the basic and DPC
approach in Figure 6. From the visuals, we can see that the DPC head variant
is able to segment thinner objects such as poles better than the basic encoder
head. The figure is best viewed in colour.

4.1 Inference Speed on Mobile Phone

In this section, we provide inference speed results and our procedure for the mea-
surements. As discussed in ShuffleNet V2 [18], we believe that the computational
efficiency of the network should be measured on the target devices rather than
purely comparing by the FLOPs. Thus, we convert the competing networks to
Tensorflow Lite, a binary model representation for inferencing on mobile phones,
for the speed evaluation. Tensorflow Lite has a limited number of available op-
erations in its current implementation, thus complex architectures such as [12]
cannot be converted without implementing the missing operations on the Ten-



10 S. Türkmen, J. Heikkilä

Table 5. Inference performance on OnePlus A6 with an input size of 224 × 224.

Backbone Encoder GFLOPs Inference (ms) Var (ms) FPS Size (MB)

ShuffleNet V2
Basic 0.47 50.89 0.57 19.65 4.6
DPC 0.65 64.89 3.53 15.41 6

MobileNet V2
Basic 1.00 101.46 25.04 9.86 8.4
DPC 1.18 116.16 44.01 8.61 9.9

sorflow Lite. But, both Mobilenet V2 and ShuffleNet V2 are compatible and
require no additional custom operations.

The measurements were done on OnePlus A6003, Snapdragon 845 CPU, 6GB
RAM, 16 + 20 MP Dual Camera, Android version 9, OxygenOS version 9.0.3.
The device is stabilized in place, put to airplane mode, background services are
disabled, the battery is fully charged and kept plugged to the power cable. The
rear camera output image is scaled so that the smaller dimension is 224, then
the middle of the image is cropped to get an input image of 224 × 224. The
downscaling and cropping is not included in the inference time shown in Table 5
however the preprocessing of the input image, according to Equation 1, and the
final ArgMax is included in the inference time. Inference speed measurements,
presented in Table 5, are averaged over 300 frames after 30 seconds of an initial
warm-up period.

Table 5 shows that our approach of using ShuffleNet V2 as a backbone is
capable of performing real-time, close to 20Hz, semantic segmentation on a mo-
bile phone. Even with the complex DPC architecture, ShuffleNet V2 backbone
ends up with 1.54 times fewer GFLOPs over the Mobilenet V2 with basic en-
coder head. Furthermore, model size is significantly lower which is desired for
embedded devices that might have limited memory or storage size. One sur-
prising finding is that the Mobilenet V2 variants show much higher variance in
the inference time compared to the ShuffleNet V2 backbone, thus our approach
provides a more stable fps.

5 Conclusion

In this paper, we have described an efficient solution for semantic segmentation
by achieving state-of-art inference speed without compromising on the accuracy.
Our approach shows that ShuffleNet V2 is a powerful and efficient backbone for
the task of semantic segmentation. It achieves 70.33% mIOU when combined
with the DPC head, and 67.7% mIOU2 combined with the basic encoder head
on Cityscapes challenge. Furthermore, we showed that our network is capable
of running real-time, the DPC head at 15.41 fps and the basic encoder head at
19.65 fps, on a mobile phone with an input image size of 224× 224. Future work
is to implement an efficient decoder architecture to get more refined edges along
the borders of the objects on the segmentation mask.

2 The validation set result.



An efficient solution for semantic segmentation 11

(a) Input image (b) Ground truth (c) Basic head (d) DPC

Fig. 6. Segmentation visualisations on the validation set. Best viewed in colour. (Black
coloured regions on ground truth are ignored)

References

1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 39(12), 2481–2495 (Dec 2017)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13, 281–305 (2012)

3. Berman, M., Rannen Triki, A., Blaschko, M.B.: The lovász-softmax loss: A
tractable surrogate for the optimization of the intersection-over-union measure
in neural networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4413–4421 (2018)

4. Chen, L.C., Collins, M., Zhu, Y., Papandreou, G., Zoph, B., Schroff, F., Adam,
H., Shlens, J.: Searching for efficient multi-scale architectures for dense image pre-
diction. In: Advances in Neural Information Processing Systems. pp. 8713–8724
(2018)

5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

6. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. Lecture Notes in
Computer Science p. 833–851 (2018)

7. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Jul 2017)

8. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (Jun 2016)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: CVPR09 (2009)



12 S. Türkmen, J. Heikkilä

10. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisser-
man, A.: The pascal visual object classes challenge: A retrospective. International
Journal of Computer Vision 111(1), 98–136 (Jan 2015)

11. Gamal, M., Siam, M., Abdel-Razek, M.: Shuffleseg: Real-time semantic segmenta-
tion network. arXiv preprint arXiv:1803.03816 (2018)

12. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. 2017 IEEE International
Conference on Computer Vision (ICCV) (Oct 2017)

13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

14. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume 37. pp.
448–456. ICML’15, JMLR.org (2015)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L.: Microsoft coco: Common objects in context. Lecture Notes in
Computer Science p. 740–755 (2014)

17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3431–3440 (2015)

18. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. Lecture Notes in Computer Science p. 122–138
(2018)

19. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: A deep neural network
architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147
(2016)

20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015 p. 234–241 (2015)

21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (Jun 2018)

22. Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., Jagersand, M., Zhang, H.:
A comparative study of real-time semantic segmentation for autonomous driving.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). pp. 700–70010. IEEE (2018)

23. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (Jun 2018)

24. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Jul 2017)

25. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017)


