Skip to main content

Gene- and Pathway-Based Deep Neural Network for Multi-omics Data Integration to Predict Cancer Survival Outcomes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11490))

Abstract

Data integration of multi-platform based omics data from biospecimen holds promise of improving survival prediction and personalized therapies in cancer. Multi-omics data provide comprehensive descriptions of human genomes regulated by complex interactions of multiple biological processes such as genetic, epigenetic, and transcriptional regulation. Therefore, the integration of multi-omics data is essential to decipher complex mechanisms of human diseases and to enhance treatments based on genetic understanding of each patient in precision medicine. In this paper, we propose a gene- and pathway-based deep neural network for multi-omics data integration (MiNet) to predict cancer survival outcomes. MiNet introduces a multi-omics layer that represents multi-layered biological processes of genetic, epigenetic, and transcriptional regulation, in the gene- and pathway-based neural network. MiNet captures nonlinear effects of multi-omics data to survival outcomes via a neural network framework, while allowing one to biologically interpret the model. In the extensive experiments with multi-omics data of Gliblastoma multiforme (GBM) patients, MiNet outperformed the current cutting-edge methods including SurvivalNet and Cox-nnet. Moreover, MiNet’s model showed the capability to interpret a multi-layered biological system. A number of biological literature in GBM supported the biological interpretation of MiNet. The open-source software of MiNet in PyTorch is publicly available at https://github.com/DataX-JieHao/MiNet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://cancergenome.nih.gov.

  2. 2.

    https://github.com/DataX-JieHao/MiNet.

  3. 3.

    https://github.com/CancerDataScience/SurvivalNet.

  4. 4.

    https://github.com/lanagarmire/cox-nnet.

References

  1. Aure, M.R., et al.: Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol. 14(11), R126 (2013). https://doi.org/10.1186/gb-2013-14-11-r126

    Article  Google Scholar 

  2. Bleeker, F.E., et al.: Mutational profiling of kinases in glioblastoma. BMC Cancer 14(1), 718 (2014). https://doi.org/10.1186/1471-2407-14-718

    Article  Google Scholar 

  3. Bruder, C.E., et al.: Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am. J. Hum. Genet. 82(3), 763–771 (2008). https://doi.org/10.1016/j.ajhg.2007.12.011

    Article  MathSciNet  Google Scholar 

  4. Catacuzzeno, L., Franciolini, F.: Role of KCa3.1 channels in modulating Ca\(^{2+}\) oscillations during glioblastoma cell migration and invasion. Int. J. Mol. Sci. 19(10), 2970 (2018). https://doi.org/10.3390/ijms19102970

    Article  Google Scholar 

  5. Chaudhary, K., Poirion, O.B., Lu, L., Garmire, L.X.: Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24(6), 1248–1259 (2018). https://doi.org/10.1158/1078-0432.CCR-17-0853

    Article  Google Scholar 

  6. Chi, D.D.J., et al.: Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am. J. Pathol. 150(6), 2143–2152 (1997). https://www.ncbi.nlm.nih.gov/pubmed/9176405

    Google Scholar 

  7. Ching, T., Zhu, X., Garmire, L.X.: Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data. PLOS Comput. Biol. 14(4), 1–18 (2018). https://doi.org/10.1371/journal.pcbi.1006076

    Article  Google Scholar 

  8. Gründker, C., Emons, G.: The role of gonadotropin-releasing hormone in cancer cell proliferation and metastasis. Front. Endocrinol. 8, 187 (2017). https://doi.org/10.3389/fendo.2017.00187

    Article  Google Scholar 

  9. Hao, J., Kim, Y., Mallavarapu, T., Oh, J.H., Kang, M.: Cox-PASNet: pathway-based sparse deep neural network for survival analysis. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 381–386 (2018). https://doi.org/10.1109/BIBM.2018.8621345

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123

  11. Higdon, R., et al.: The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders. OMICS: J. Integr. Biol. 19(4), 197–208 (2015). https://doi.org/10.1089/omi.2015.0020

    Article  Google Scholar 

  12. Huang, S., Chaudhary, K., Garmire, L.X.: More is better: recent progress in multi-omics data integration methods. Front. Genet. 8, 84 (2017). https://doi.org/10.3389/fgene.2017.00084

    Article  Google Scholar 

  13. Jayaram, S., Gupta, M.K., Raju, R., Gautam, P., Sirdeshmukh, R.: Multi-omics data integration and mapping of altered kinases to pathways reveal gonadotropin hormone signaling in glioblastoma. OMICS: J. Integr. Biol. 20(12), 736–746 (2016). https://doi.org/10.1089/omi.2016.0142

    Article  Google Scholar 

  14. Kang, M., et al.: Multi-block bipartite graph for integrative genomic analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(6), 1350–1358 (2017). https://doi.org/10.1109/TCBB.2016.2591521

    Article  Google Scholar 

  15. Kim, D., et al.: Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma. J. Am. Med. Inform. Assoc. 24(3), 577–587 (2017). https://doi.org/10.1093/jamia/ocw165

    Article  Google Scholar 

  16. Kristensen, V.N., et al.: Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer 14, 299–313 (2014). https://doi.org/10.1038/nrc3721

    Article  Google Scholar 

  17. Lyu, G., et al.: Genome and epigenome analysis of monozygotic twins discordant for congenital heart disease. BMC Genomics 19(1), 428 (2018). https://doi.org/10.1186/s12864-018-4814-7

    Article  Google Scholar 

  18. Reimand, J., et al.: Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 14(2), 482–517 (2019). https://doi.org/10.1038/s41596-018-0103-9

    Article  Google Scholar 

  19. Ruben, M.C.: BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits. J. Mach. Learn. Res. 15, 3915–3919 (2014). http://jmlr.org/papers/v15/martinezcantin14a.html

    MathSciNet  MATH  Google Scholar 

  20. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39(5), 1–13 (2011). https://doi.org/10.18637/jss.v039.i05

    Article  Google Scholar 

  21. Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102(43), 15545–15550 (2005). https://doi.org/10.1073/pnas.0506580102

    Article  Google Scholar 

  22. Ulrich, T.A., de Juan Pardo, E.M., Kumar, S.: The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69(10), 4167–4174 (2009). https://doi.org/10.1158/0008-5472.CAN-08-4859

    Article  Google Scholar 

  23. Wagner, J.R., et al.: The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 15(2), R37 (2014). https://doi.org/10.1186/gb-2014-15-2-r37

    Article  Google Scholar 

  24. Yousefi, S., et al.: Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci. Rep. 7(1), 11707 (2017). https://doi.org/10.1038/s41598-017-11817-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingon Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, J., Masum, M., Oh, J.H., Kang, M. (2019). Gene- and Pathway-Based Deep Neural Network for Multi-omics Data Integration to Predict Cancer Survival Outcomes. In: Cai, Z., Skums, P., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2019. Lecture Notes in Computer Science(), vol 11490. Springer, Cham. https://doi.org/10.1007/978-3-030-20242-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20242-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20241-5

  • Online ISBN: 978-3-030-20242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics