Skip to main content

The Cluster Affinity Distance for Phylogenies

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11490))

Included in the following conference series:

Abstract

Studying phylogenetic trees is fundamental to biology and benefitting a vast variety of other research areas. Comparing such trees is essential to such studies for which a growing and diverse collection of tree distances are available. In practice, tree distances suffer from problems that can severely limit their applicability. Notably, these distances include the cluster matching distance that is adapted from the Robinson-Foulds distance to overcome many of the drawbacks of this traditional measure. However, at the same time, the cluster matching distance is much more confined in its application than the Robinson-Foulds distance and makes sacrifices for satisfying the properties of a metric. Here, we propose the cluster affinity distance, a new tree distance that is adapted from the cluster matching distance but has not its drawbacks. Nevertheless, as we show, the cluster affinity distance preserves all of the properties that make the matching distance appealing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Ann. Comb. 5(1), 1–15 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arvestad, L., et al.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: RECOMB, pp. 326–335. ACM (2004)

    Google Scholar 

  3. Betkier, A., Szczęsny, P., Górecki, P.: Fast algorithms for inferring gene-species associations. In: Harrison, R., Li, Y., Măndoiu, I. (eds.) ISBRA 2015. LNCS, vol. 9096, pp. 36–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19048-8_4

    Chapter  Google Scholar 

  4. Bogdanowicz, D., Giaro, K.: On a matching distance between rooted phylogenetic trees. Int. J. Appl. Math. Comput. 23(3), 669–684 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Ann. Comb. 8(4), 409–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. DasGupta, B., et al.: On distances between phylogenetic trees. In: SODA 1997, pp. 427–436 (1997)

    Google Scholar 

  7. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Classif. 2(1), 7–28 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Felenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2003)

    Google Scholar 

  9. Harding, E.F.: The probabilities of rooted tree-shapes generated by random bifurcation. Adv. Appl. Probab. 3(1), 44–77 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huber, K.T., et al.: Metrics on multilabeled trees: interrelationships and diameter bounds. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(4), 1029–40 (2011)

    Article  Google Scholar 

  11. Katherine, S.J.: Review paper: the shape of phylogenetic treespace. Syst. Biol. 66(1), e83–e94 (2017)

    Google Scholar 

  12. Kuhner, M.K., Yamato, J.: Practical performance of tree comparison metrics. Syst. Biol. 64(2), 205–14 (2015)

    Article  Google Scholar 

  13. Li, M., Tromp, J., Zhang, L.: On the nearest neighbour interchange distance between evolutionary trees. J. Theor. Biol. 182(4), 463–7 (1996)

    Article  Google Scholar 

  14. Li, M., Zhang, L.: Twist-rotation transformations of binary trees and arithmetic expressions. J. Algorithms 32(2), 155–166 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, Y., Rajan, V., Moret, B.M.E.: A metric for phylogenetic trees based on matching. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1014–1022 (2012)

    Article  Google Scholar 

  16. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30(3), 729–752 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Makarenkov, V., Leclerc, B.: Comparison of additive trees using circular orders. J. Comput. Biol. 7(5), 731–744 (2000)

    Article  Google Scholar 

  18. Moon, J., Eulenstein, O.: Cluster matching distance for rooted phylogenetic trees. In: Zhang, F., Cai, Z., Skums, P., Zhang, S. (eds.) ISBRA 2018. LNCS, vol. 10847, pp. 321–332. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94968-0_31

    Chapter  Google Scholar 

  19. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53(1–2), 131–147 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Semple, C., Steel, M.A.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  21. Steel, M.A., Penny, D.: Distributions of tree comparison metrics. Syst. Biol. 42(2), 126–141 (1993)

    Google Scholar 

  22. Sukumaran, J., Holder, M.T.: Dendropy: a Python library for phylogenetic computing. Bioinformatics 26(12), 1569–1571 (2010)

    Article  Google Scholar 

  23. Wilkinson, M., et al.: The shape of supertrees to come: tree shape related properties of fourteen supertree methods. Syst. Biol. 54(3), 419–431 (2005)

    Article  MathSciNet  Google Scholar 

  24. Wu, Y.-C., et al.: TreeFix: statistically informed gene tree error correction using species trees. Syst. Biol. 62(1), 110–20 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

OE is supported by the National Science Foundation under Grant No. 1617626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Eulenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moon, J., Eulenstein, O. (2019). The Cluster Affinity Distance for Phylogenies. In: Cai, Z., Skums, P., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2019. Lecture Notes in Computer Science(), vol 11490. Springer, Cham. https://doi.org/10.1007/978-3-030-20242-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20242-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20241-5

  • Online ISBN: 978-3-030-20242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics