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Abstract. We investigate discrete spin transformations, a geometric framework
to manipulate surface meshes by controlling mean curvature. Applications in-
clude surface fairing – flowing a mesh onto say, a reference sphere – and mesh
extrusion – e.g., rebuilding a complex shape from a reference sphere and curva-
ture specification. Because they operate in curvature space, these operations can
be conducted very stably across large deformations with no need for remeshing.
Spin transformations add to the algorithmic toolbox for pose-invariant shape anal-
ysis. Mathematically speaking, mean curvature is a shape invariant and in gen-
eral fully characterizes closed shapes (together with the metric). Computationally
speaking, spin transformations make that relationship explicit. Our work expands
on a discrete formulation of spin transformations. Like their smooth counterpart,
discrete spin transformations are naturally close to conformal (angle-preserving).
This quasi-conformality can nevertheless be relaxed to satisfy the desired trade-
off between area distortion and angle preservation. We derive such constraints
and propose a formulation in which they can be efficiently incorporated. The ap-
proach is showcased on subcortical structures.

1 Introduction

Generative shape models are tremendously useful in computational anatomy (shape rep-
resentation, population analysis), medical imaging and computer vision (segmentation,
tracking), computer graphics and beyond. Most approaches to statistical shape analy-
sis fundamentally rely on registration, from landmark based representations and active
shape models [4,1,25], to medial representations [14] and Principal Geodesic Analy-
sis [9], to deformable registration and diffeomorphometry [8,33]. Registration is known
to be a source of bias in shape analysis, but is often a necessary ‘evil’ because input
data does not come pre-aligned in a common reference frame (or pose). In contrast, the
shape information of interest is often invariant to the object pose. Our main motivation
is to investigate geometric tools that can open the way to learned, pose-invariant gener-
ative shape models (specifically, curves and 3D surfaces). The key insight is that mean
curvature is pose-invariant and generally characterizes the shape losslessly. This work
investigates spin transformations as the algorithmic tool to computationally implement
this insight. The cornerstone of the framework lies in a gracefully simple equation that
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Fig. 1. Discrete spin transformations allow for controlling meshes via the mean curvature invari-
ant. (a) Input face edge-constraint nets are flowed to a reference shape in the homotopy class (e.g.
the unit sphere S2). Information required to recompute the original shape up to pose and scale
is summarized within a scalar field ρ. (b) The inverse spin transformation is retrieved. Texture
coordinates mapped onto the reference sphere are pushed forward with the extruded mesh. Note
the preservation of texture, from which deformations are seen to be quasi-conformal. Top row:
putamen. Bottom: icosahedron.

relates a spin transformation φ : F → H (one quaternion per face in the mesh) to a
change µ : F → R in the mean curvature via a first-order differential operator De:

Deφ = µφ . (1)

Typically, a desired change of curvature is specified via µ, yielding a transforma-
tion φ from which a new shape can be constructed. The present work demonstrates this
concept and shows its applicability to manipulate (flow and extrude) closed shapes in
a stable manner across large deformations. Section 3 reviews the discrete geometric
setting, i.e. (i) the geometric objects to which the framework applies, (ii) discrete mean
curvature, (iii) background on quaternions as similarity transformations in R3. Section 4
introduces discrete spin transformations. Within the framework of spin transformations,
the task of flowing a mesh onto a reference shape and that of extruding a shape back
from the reference are highly symmetric: both rely on the ability to compute a transfor-
mation based on prescribed curvature and area changes. Section 5 gives an overview of
the proposed procedure. Section 6 discusses applications and results.

2 Related work

Pose-invariant shape analysis. Spectral shape descriptors [29,28], built from the spec-
trum and eigenfunctions of the Laplace(–Beltrami) operator, have achieved popularity
in this context, spanning a variety of applications e.g., object retrieval [2], shape dis-
similarity quantification [17], analysis of anatomical structures [26,10,31], transfer of
structural and functional data [27,20]. Spectral representations pose two challenges:
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firstly, going back from the spectral descriptor to the corresponding shape is difficult;
and secondly, they tend to discard fine-grained, local information in favor of global
shape properties and symmetries. To supplement the intrinsic Laplace–Beltrami opera-
tor, the extrinsic Dirac operator [19], which carries more information about the shape
immersion, has recently been investigated for shape analysis. Geometric deep learn-
ing [3] provides the toolset to analyze functions over a fixed graph. It remains unclear
how to analyze graphs themselves. The present work contributes with a lossless and
invertible mechanism for turning a mesh into a function (the curvature) over a reference
template (say, a sphere).

Shape flows, large deformations, conformal maps. Mean curvature flow is the archety-
pal algorithm for fairing, in part due to its simplicity and intuitive appeal. However mesh
quality tends to degrade quickly throughout the flow, requiring tedious monitoring and
remeshing to reduce artefacts and prevent singularities [16]. Furthermore it is not suit-
able for mesh extrusion. Conformal maps are often perceived as the gold standard in
such contexts, and spin transformations originate from this perspective [5,6]. Several
discretized and discrete quasi-conformal frameworks have been proposed (e.g., [22,18])
on top of an incredibly rich body of theoretical work. Conformal maps have found a
natural application in the context of brain mapping [13,11] by mapping the cortical sur-
face to a reference domain. Rather than strictly on conformality, our focus here is on
a parametrization of large deformations that (1) works from the shape invariant mean
curvature (2) allows to efficiently flow between any shape and a reference. It is more
generally related in spirit to large diffeomorphic frameworks [30,21] that can flow a
shape from a template and (pose-equivariant) vector field. Our work expands on the
framework of discrete spin transformations as introduced by Ye et al. [32]. One of the
appeals of a discrete framework is to bypass discretization errors by design and to offer
a consistent definition of discrete geometric concepts such as curvature. We introduce
the framework to the community and contribute (i) with an optimization strategy that
gives finer-grained control over deformations; (ii) by deriving constraints within this
formulation for integrability on general topologies, and area preservation; (iii) by ex-
ploring its potency for mesh extrusion.

3 Discrete Geometric Setting

Face edge-constraint nets. Our work focuses on the case of closed compact orientable
surfaces in R3 and follows the discrete geometric setting introduced by Ye et al. [32].
Surfaces are discretized as face edge-constraint nets, generic constructs that encompass
but are not restricted to standard triangulated meshes. Let G = (V,F , E) denote the net
combinatorics, resp. its vertices, faces and edges. Adjacent faces meet along a single
edge. Edges are shared by exactly two adjacent faces. Faces can be arbitrary polygons
(such as with simplex meshes [7]). In addition, let each face be assigned a unit normal
n, such that for any two adjacent faces i and j joined along edge eij ((i, j) ∈ E), the
normals satisfy the looser condition ni + nj ⊥ eij . X = (G, n) is called a face edge-
constraint net. For instance standard triangulations with normals orthogonal to faces are
face edge-constraint nets.
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Fig. 2. Face edge-constraint nets: (a) faces are general polygons; (b) face edges are oriented
(counter-clockwise); (c) θij is the bending angle, positive if the edge is convex; the edge inte-
grated mean curvatureHij = |eij | tan(θij/2) is the signed created area for face i above eij when
faces i and j are offset by a unit length 1 in the direction of their normals.

Discrete mean curvature. Let X be a net. X is orientable and, without loss of gener-
ality, directed edges eij are traversed in the direction towards which they point when
cycling over vertices of face i. This lets us orient the dihedral angle θij between planes
Pi, span{ni, eij} and Pj , span{nj , eij}. For standard triangulations, θij is just the
bending angle between faces. The integrated mean curvature on edge eij (Fig. 2(c))
is defined as Hij , |eij | tan(θij/2). The integrated mean curvature on face i is the
sum of its integrated edge curvatures: Hi,

∑
j∈N (i)Hij . The discrete mean curvature

hi ,Hi/Ai follows by turning Hi into a density over the face. With this, the discrete
mean curvature satisfies a discrete counterpart to Steiner’s formula. Steiner’s formula is
a characterization of mean curvature that relates it to the relative change of area when
offsetting the surface in the normal direction n by a distance t (replace Ai by an in-
finitesimal area element dA in Eq. (2) for the original formula):

A
(t)
i = Ai(1 + hit+O(t2)) . (2)

Geometry in the quaternions. Quaternions H provide a natural algebraic language for
geometry in R3, much like complex numbers for planar geometry. Let {1, i, j,k} denote
a basis for H. Elements v,(vx, vy, vz)∈R3 are identified with pure imaginary quater-
nions vxi+vyj+vzk ∈ ImH , span{i, j,k}, so that surfaces are naturally immersed in
Im H. Denote by q̄ , a−(bi+cj+dk) the quaternionic conjugate of q,a+bi+cj+dk ∈ H.
The norm |q| of q is defined as the square root of q̄q = a2+b2+c2+d2. All q 6= 0 admit an
inverse q−1 = q̄/|q|2. Again like complex numbers, quaternions admit a polar decom-
position q=seθu=s(cos(θ) + sin(θ)u) with u∈ Im H a unit vector, which makes their
geometric meaning more explicit. Indeed, v 7→ qvq−1, also known as conjugation by q,
expresses rotation around u by an angle 2θ. In the same vein, the expression ṽ = qvq̄
conveniently expresses a similarity transformation: ṽ corresponds to v rotated around u
by 2θ and rescaled by s2.

Hyperedges. Every edge in the net X is associated with a quaternion Eij dubbed hy-
peredge, with real part equal to the integrated mean curvature Hij at the edge, and
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imaginary part equal to the embedding eij ∈ Im H of the edge:

Eij , Hij + eij ∈ H . (3)

Hyperedges are the fundamental structure on which discrete spin transformations act.
They summarize all the geometric information that, along with the mesh combina-
torics, allows to reconstruct the discrete surface immersion (Appendix A). With that,
spin transformations are introduced in a straightforward manner.

4 Discrete Spin Transformations

Discrete spin transformations. A discrete spin transformation φ associates a single
quaternion φi with each face i of a face edge-constraint net. The transformation acts on
hyperedges Eij and face normals ni as follows:

Eij 7→ Ẽij = φ̄iEijφj ,

ni 7→ ñi = φ−1i niφi .
(4)

The elegance of the construct lies in the fact that Eq. (4) does transform a face edge-
constraint net into another edge-constraint net. This is easily checked (cf. [32]), with
the main elements of the proof stemming from the geometric interpretation of hyper-
edges (Appendix A) and from the constraint on face normals. Furthermore, discrete spin
transformations E →φ Ẽ are trivially invertible: Ẽ →φ−1 E. The integrability condi-
tion that each face in the new net closes (

∑
jẼij ∈R) is equivalent to the existence of

a real valued function ρ : i 7→ ρi ∈ R over faces such that:

DXφ = ρAφ . (5)

Equation (5) is the cornerstone of the framework. DX is henceforth referred to as
the intrinsic Dirac operator. DX sends a quaternionic function over faces to another
one such that (DXφ)i ,

∑
j Eijφj . Left multiplying both sides by φ̄i, the closed-

ness constraint on faces is immediately apparent: φ̄i(DXφ)i =
∑
j Ẽij must be real-

valued. For ease of exposition, the expression in the introduction is formulated us-
ing a slightly different yet immediately related operator, the extrinsic Dirac operator
(Deφ)i ,

∑
j Eij(φj − φi) = (DXφ)i − Hiφi. It also discards the normalization by

A as in [32]. The proposed normalization however mirrors more faithfully the smooth
counterpart of the present setting (see e.g. [15]).

The intrinsic Dirac operator DX creates an explicit relationship between a spin
transformation φ and the discrete (resp. integrated) mean curvature h̃ (resp. H̃) of the
new net, namely φ̄i(DXφ)i = H̃i , h̃iÃi as long as the new net closes. Coupling with
Eq. (5),

h̃iÃi = ρiAi|φi|2 . (6)

When φ := 1 is the identity transform, ρi =hi = h̃i. For smooth |φi| and from Eq. (4),
ρi
√
Ai ≈ h̃i

√
Ãi. In other words, ρi jointly describes the mean curvature and length

element. This quantity is precisely known as the mean curvature half-density h|df | in
the smooth setting, and is generally in one-to-one correspondence with a given shape.
Finally, with the extrinsic Dirac operator, the corresponding µ describes a change in
half-density instead: h̃iÃi = (hi + µi)Ai|φi|2.
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Fig. 3. A few leading eigenvectors of the intrinsic Dirac operator for the unit sphere, visualized
as surface immersions (color map: eigenvector magnitude).

Dirac operators. Dirac operators DX and De have a number of properties that make
them appealing for various tasks in shape analysis. DX and De are self-adjoint opera-
tors. Dirac operators relate to square roots of the Laplace–Beltrami operatorL. Whereas
L captures the intrinsic manifold geometry and is invariant by isometry, the Dirac op-
erators can disambiguate much more about the surface immersion into R3. We refer
the reader to [19,32] for a discussion from this perspective. The eigenvectors of Dirac
operators all satisfy Eq. (5) and thus provide new immersions of the abstract mani-
fold into R3 (new transformed X̃ ). The first (null) eigenvector of De is trivial. DX
cannot have a null eigenvalue for closed surfaces (e.g. spherical topology) of practical
interest in the present work, since that would result in a minimal closed surface with
everywhere zero mean curvature. The smallest eigenvector of DX provides a generally
non-trivial immersion with higher smoothness than the original shape (lower Willmore
energy

∫
|h|2dA). Ye et al. [32] explore this mechanism for the purpose of surface fair-

ing. The next leading eigenvectors give some geometric insight into DX (Fig. 3). In
this work however, we investigate a strategy closely related to [6] with a fine-grained
control over the surface deformations.

5 Algorithms

Remark 51. Quaternions q admit representations M [q] as 4×4 real matrices (Eq. (7)),
so that standard linear algebra libraries can be used to solve quaternionic linear sys-
tems. In particular, M [q̄] = M [q]T, thus Hermitian (quaternionic) forms are repre-
sented by real symmetric matrices. We denote real vectors and matrix representations
below with upright bold symbols.

M [q] ,


a −b −c −d
b a −d c
c d a −b
d −c b a

 . (7)

Overview. The scalar function ρ introduced in section 4 provides the primary degrees
of freedom for mesh manipulation, and it tightly relates to mean curvature. Of course
only a subset of functions ρ can be associated with some φ such that the integrability
condition Eq. (5) is satisfied. Namely, Dρ,D−ρ should have a null eigenvalue. This
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leads Crane et al. [5] to solve for the smallest eigenvalue γ and eigenvector φ, yielding
a solution of Eq. (5) up to a small constant shift: Dφ= (ρ+γ)φ. We propose instead
to formulate the objective Dρφ' 0 as a minimization problem. This gives fine-grained
control to add specifications (e.g. smoothness, area distortion), many of which can be
efficiently expressed as linear(ized) constraints or quadratic regularizers, within a uni-
fied formulation. Thus finding φ amounts to solving a quadratic problem:

argmin
φ

φT(DρA
−1Dρ)φ︸ ︷︷ ︸

Dρφ'0

+ (φ−1)TαR(φ−1)︸ ︷︷ ︸
regularization

, (8)

under a set of linear constraints on φ. A is a diagonal matrix of face areas. In practice
we set R to A+βLf , where Lf is an integrated Laplacian over faces. The eigensystem
actually solved in [5] closely relates to the simplest case where there are no constraints
and β :=0.

Overall, the procedure is as follows: prescribe a scalar function ρ for a target shape
or curvature change (sec. 6); then solve for the spin transformation φ (Eq. (8)); finally
compute new hyperedges (Eq. (4)) and solve a linear system for the new vertex coordi-
nates (Eq. (9)). The steps are typically iterated over, resulting in a flow.

Computing the new immersion. Let transformed edges ẽij = Im Ẽij be indexed by
their start and end vertices v → v′. Vertex coordinates f̃ : v∈V 7→ f̃v satisfy f̃v′−f̃v =
ẽv→v′ . In practice, we solve the mathematically equivalent (Appendix B) linear system

∆f̃=∇ · ẽ , (9)

where ∆ and ∇· are the standard discrete (cotangent) mesh Laplacian and divergence
operators [23]. This method of integration is robust to numerical errors. The Laplacian
and divergence are computed w.r.t. either the source (e) or target (ẽ) mesh metric (with
empirically identical results). A benefit of working from a discrete setting is that no
discretization error is introduced from φ to the corresponding f̃ .

Geometrically constrained flows. The proposed formulation (Eq. (8)) enables fine-
grained control over the flow by prescribing additional constraints. For instance, the
method extends to topologies beyond spherical by adding an exactness constraint (Ap-
pendix C). The mapping can also be encouraged to preserve angles (i.e. conformality)
and minimize area distortion. Conformality is key in preserving mesh quality across
exceptionally large deformations, which prevents considerable loss of numerical stabil-
ity. It is intuitively described as circles being locally transformed into circles, or indeed
texture-preserving (Fig. 1). Quasi-conformality is inherent to the present framework.
From Eq. (4), the relative length of edges is preserved as soon as |φi| varies smoothly
across faces. On the other hand large area distortion can be introduced, particularly in
regions of high curvature. In some applications, we may prefer to trade off some dis-
tortion of angles for a better preservation of areas. We note again from Eq. (4) that
the magnitude |φi|4 of the spin transformation relates to the local change of area. Thus
scale changes log Ãi/Ai (up to global rescaling) can be penalized via a linearized soft
constraint over φ (Appendix D).
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Fig. 4. Example surface flow of a subcortical structure (brain stem) to the reference sphere. Com-
parison of discrete spin transformations with an incompressible mean curvature (MC) flow. (Left)
The brain stem. (Middle) Area distortion (top row, 0 distortion is best) and conformality error
(bottom row, Q=1 is best) displayed over the reference geometry. (Right) Zoom on the flowed
triangulated mesh (A.C. ≡ area constraint flow; free ≡ unconstrained). Unlike MC flows, spin
transformations naturally preserve the triangulation quality and are numerically stable. The area
constrained variant yields a reasonable trade-off between preserving angles and areas without
introducing unexpected artefacts.

Filtering in curvature space. As described in [6] in a related setting, the flow of the
spin transformation can also be altered by directly manipulating ρ. The rate of change
for geometric features of various scales can be tweaked by manipulating its frequency
spectrum. Moreover some constraints can be efficiently enforced by orthogonal projec-
tion of ρ onto a linear subspace. In particular, Appendix C derives alternative integra-
bility conditions in the form of simple linear constraints on ρ, for the proposed discrete
geometric framework.

6 Applications

This section showcases the approach on a collection of structured meshes of subcortical
structures from the UK Biobank database [24]. The typical mesh size is of a few thou-
sand nodes (up to 20k). The framework was implemented in numpy. The tool mostly
relies on efficient (sparse) linear algebra. Experiments were run on a standard laptop
(i7-8550U CPU @ 1.80GHz).

Surface Fairing. Surface fairing is the process of producing successively smoother ap-
proximations of a mesh geometry f . Most algorithms proceed by minimizing a fairing
energy, such as the membrane energyEM (f),

∫
S
|∇f |2dA or the Willmore functional

EW (f),
∫
S
h2dA. Recalling that ∆f = hn and ignoring the dependence of ∆ on f ,

gradient descent on EM (resp. EW ) yields ḟ ∝∆f (ḟ ∝∆2f ). The former yields the
widespread mean curvature flow ḟ ∝−hn that iteratively evolves points along the sur-
face normal n with a magnitude proportional to the mean curvature h. Crane et al. [6]
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first suggested in the context of spin transformations to optimize EW directly w.r.t. h,
yielding the simple flow ḣ :=h in curvature space. A benefit of the approach is to decou-
ple time and spatial integration, yielding numerically stable solutions across large time
steps. We follow the same strategy. The prescribed change of curvature δh :=−τh is
then (optionally filtered and) integrated into a new surface immersion f̃ , by computing
the corresponding spin transformation as per section 5. Specifically, for a given target
curvature h̄i (say hi+δhi) and area Āi, we let ρi := h̄i

√
Āi/Ai (section 4). The standard

unconstrained optimization (Eq. (8)) regularized with the face Laplacian Lf (or one of
its powers) yields quasi-conformal transformations (Fig. 1). Large steps τ=0.5–1 typi-
cally remain stable. Whether φ is numerically integrable can be checked by monitoring
the discrepancy between edges Ẽ integrated as per Eq. (4), and edges recomputed from
f̃ (after getting f̃ from Eq. (9)). The closedness generally holds within a few percent
across several large steps without an explicit constraint, and within 10−6 with an ex-
plicit constraint (Appendix B). A trade-off between conformality and area distortion is
achieved by weighing in a soft constraint on the square norm of the logarithmic area
distortion (Fig. 4).

Comparison to Mean Curvature Flow. The procedure is compared with an incom-
pressible mean curvature flow. Incompressibility is enforced to make the flow less prone
to develop singularities, by adding a balloon energy 〈h〉n, where 〈h〉=

∫
S
hdA is the

average mean curvature. Two metrics of interest, defined over the mesh surface, are the
conformality error Q and the logarithmic area distortion εs = log Ã/A (after normal-
ising to the same total area). The quality factor Q measures how close-to-conformal a
transformation is, as the ratio of the largest to smallest eigenvalues of the Jacobian of
the mapping from f to f̃ . For a conformal deformation, Q is identically 1 throughout
the mesh. However the area distortion εs may become significant. Fig. 4 exemplifies
the general observation that the mean curvature flow realises a suboptimal trade-off
between angle and area preservation. As expected, unconstrained discrete spin trans-
formations are quasi-conformal. Unavoidable area distortion is introduced but mesh
elements retain their original quality (right column, top and middle). To contrast, the
mean curvature flow arbitrarily destroys the mesh quality, angle and area ratios in re-
gions of high curvature. Area constrained discrete spin transformations implement a
sensible compromise, whereby (i) area distortion is lessened; (ii) numerical stability
is preserved; (iii) the conformal error increases rather uniformly over the entire mesh,
leading to a graceful, slower loss of mesh quality. For surface fairing to a sphere, av-
eraged over a random subset of 100 meshes in the dataset and taking the maximum
over the mesh surface, we get the following – mean curvature flow: Q = 97 ± 165,
εs=4.1± 1.5; unconstrained spin transformation: Q=1.42± 0.08, εs=2.9± 0.3; area
constrained: Q= 1.7 ± 0.2, εs = 0.85 ± 0.05. For the area constrained spin transform,
the maximum area discrepancy simply reflects a user-specified soft target.

Mesh Extrusion. The task is now to reconstruct (“extrude”) a shape of interest back
from a reference sphere, given its mean curvature h? and area A? mapped onto the
sphere surface. There is to our knowledge very little done in that direction, even in re-
lated work [6,32]. To emphasize, we only wish to recover the original mesh up to pose
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Fig. 5. Example extrusion of a brain stem from the reference sphere. The original shape is over-
laid as a wireframe. (1st and 2nd) Close to the initial stage. The target mean curvature map is
displayed, rather than the reconstruction error. Note that the shape flow in the next stages intu-
itively matches the information captured in these maps. (3rd and 4th) Intermediate stages in the
flow, with overlayed reconstruction error. (5th to last) Reconstructed mesh from two views.

and scale. Encoding scale presents little difficulty, and shape is invariant under changes
of pose. To evaluate the reconstruction accuracy, we rigidly align and rescale the ex-
truded shape to the original one, and compute the maximum distance from points on the
extruded mesh to the original surface. The strategy for extrusion closely mirrors that of
mesh fairing, whereby we get h̄i from δhi :=h?i−hi, and set ρi := h̄i

√
A?i /Ai. As a pre-

liminary comment, note that the degree of challenge regarding mesh extrusion critically
depends on the exact experimental setting and goal, as contrasted in the two following
settings. The first experiment aims to estimate the accuracy that can be reached in the
best scenario (somewhat upper bounded by the registration error). We take a collection
of 300 subcortical meshes from the UK Biobank (incl. brain stems, caudate, putamen,
accumbens, amygdala, hippocampus, thalamus, palladium) and flow them onto the unit
sphere. We do not perform remeshing, only interpolating relevant maps to nodes and
back to faces. We then directly reconstruct the mesh as described above. On average
over the dataset, the maximum point-to-surface error is of 0.4mm. The distribution of
error is widely spread over different structures, the most challenging being caudates
(1.4) and hippocampi (1.2); and the least ones being the accumbens, amygdala, pal-
ladium and thalamus (∼ 0.01–0.02). This matches our expectations, given that cau-
dates and hippocampi are in fact highly non spherical. Thus very significant area or
angle distortion is introduced when mapping onto the sphere. The second experiment
investigates a more challenging setup, whereby the flowed surface is remapped onto a
reference sphere with uniform meshing. Shape-specific vertex density as well as face
aspect ratio, which reflect the area and angle distortion introduced during the fairing, are
thus discarded. We experiment with a set of 100 brain stems (Fig. 5), which represent a
happy medium between the most challenging and trivial structures, with a maximum re-
construction error of 1.4±0.3mm (2–4%). For the most challenging structures, various
strategies to guide the reconstruction using either additional information obtained dur-
ing the flow, or multiscale approaches with hierarchical encoding could be considered.
This is left to explore in future work.
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7 Conclusion

We have presented a method to manipulate surface meshes across very large deforma-
tions by prescribing mean curvature (half-density). The framework is well suited for
mesh fairing and extrusion, e.g. to map shapes to, or back from a unit sphere. As a per-
spective, we believe the approach to have potential for pose-invariant shape analysis,
specifically for generative modeling. Indeed mean curvature together with the metric
generally is in one-to-one correspondence with the (closed) shape; this is in particular
true for a spherical topology. We have shown how spin transformations computationally
implement this insight. Therefore the shape geometry could be losslessly encoded as a
scalar function on a template, making the modeling task more amenable to learning. In
the smooth setting, spin transformations are a subgroup of conformal maps. This partly
explains their numerical stability across large flow steps, a property inherited in the dis-
crete setting. However, conformal maps can introduce significant area distortion, e.g.
when flowing highly curved objects. An advantage of discrete spin transformations is
to relax exact conformality, and allow the user to trade off angle for area preservation.
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A Geometric interpretation of hyperedges

Remark 1. Letting uij,eij/|eij | and after straightforward manipulations, we get:

Eij =
|eij |

cos (θij/2)
exp

(
π − θij

2
uij

)
. (10)

Thus conjugation by E−1ij sends any vector lying on face i to face j, and −ni to nj .
Intuitively speaking, Eij carries information about a connection structure between the
affine spaces of faces j and i [12].

Remark 2. Ēij = Hij − eij = Hji + eji = Eji. Moreover, assuming the mesh to be
closed, edges sum to 0 over any given face, so that

∑
j Eij = Hi ∈ R.

Remark 3. Definition of hyperedges as per Eq. (3) may seem somewhat arbitrary. In
fact, Eij is necessarily of the form |eij | tanαij + eij , up to a multiplicative constant,
under the following mild conditions: (a) the imaginary part of Eij is along eij ; (b)
Ēij = Eji; and (c)

∑
jEij ∈R iff face i closes. Relating αij to the bending angle θij

is sufficient to guarantee that spin transformations transform a net into another valid
net (i.e. the real part H̃ij of the transformed edge Ẽij is provably consistent with the
constructive definition above).

B Edge Integration

Let ∇f̃ : ε, (v→ v′) 7→ (f̃v′− f̃v),∇f̃(ε) the discrete gradient. We are looking for
f̃ s.t. ∇f̃(ε) = ẽε. When such an f̃ exists, ẽ is said to be exact (as a discrete 1-form,
defined over edges ε). In that case, Eq. (9) follows by taking∇· on both sides.

Define the discrete curl operator [∇×ẽ](i),
∑
j∈N (i) ẽij , indexing as in section 3.

The curl sends a 1-form (over edges) to a 2-form (over faces). If [∇×ẽ] vanishes every-
where, ẽ is said to be closed. It is easy to verify that∇×∇f̃ is everywhere zero, so that
exactness always implies closedness. For a (discrete) spherical topology, the converse
holds: closedness implies exactness. Now let ẽ=Im Ẽ be generated by a spin transfor-
mation φ acting on hyperedges E with e closed. Then ẽ is closed iff Eq. (5) is satisfied
(immediate from the definition of DX , cf. section 4).

Remark 4. High-level elements of constructive proof are derived from the mesh being
simply connected. It is path connected, so we can fix a vertex v and reach any vertex v′

from v by following a path γ(v→v′) on edges. Let f̃v′ := f̃v +
∑
ε∈γ(v→v′) ẽε obtained

by summing edges along the path. f̃ is well defined because the value at v′ is indepen-
dent of the path. Indeed let γ1, γ2 two paths from v to v′. Following γ1 then the reverse
of γ2, we run a closed loop. Self-intersections are removed without loss of generality.
One can prove by induction on the loop length that edges sum to 0 over the loop, thus
the sum over γ1 and γ2 are equal. This holds for vertices on a single face by closedness.
Closed loops of arbitrary length can always be incrementally shrunk down to this case
(by simple connectivity), without changing the sum of edge values (by closedness).
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Non-simply connected topologies. Consider a path connected mesh, but possibly with
handles (note that closed loops circling a handle cannot be continuously shrunk down
to a trivial loop). A closed 1-form ẽ can fail to be exact if it has a non-zero harmonic
component, i.e. if it can be written as ẽ=ω+∇f̃ for some discrete 0-form f̃ : V → ImH
and harmonic 1-form ω : E→ ImH (s.t. ω 6= 0 is closed and ∆1ω = 0). Equivalently
ω is closed with vanishing divergence ∇ · ω = 0. While Eq. (9) still admits a solution
f̃ , the corresponding edges, ẽ−ω, are not the prescribed ones. Fortunately, convenient
exactness constraints can be derived via the following theorem.

Theorem 1 (Helmholtz–Hodge decomposition). TheL2 space of (alternating) 1-forms
(edge flows) L2

∧(E) on G , (V,F , E) admits an orthogonal decomposition into sub-
spaces of co-exact, harmonic, and exact forms:

L2
∧(E) = im([∇×]T)⊕ ker(∆1)⊕ im(∇)︸ ︷︷ ︸

ker(∇×)

, (11)

where ∆1,−∇[∇·] + [∇×]T[∇×] is the so-called graph Helmholtzian.

Proof. This is Hodge theorem in linear algebra, noting that∇T = −[∇·] and∇×∇=0.
Moreover, by Hodge isomorphism theorem, the dimension of ker(∆1) is the 1st Betty
number b1, i.e. the number of handles for G (generally small).

Concretely, let ω1 · · ·ωb1 a set of null eigenvectors for the Helmholtzian ∆1. Edges
ẽ are integrable iff ẽ is closed (Eq. 5) and orthogonal to ωkν (k = 1 · · · b1, ν = i, j,k)
w.r.t. the inner product on L2

∧(E): 〈ẽ|ωkν〉1,H =0. In Appendix C, these constraints on
transformed edges are turned into constraints on the spin transformation φ, or alterna-
tively on the prescribed curvature map ρ.

Remark 5 (Cotangent discretization). LetX a triangulated net. For R-edge flows g, g̃ ∈
L2
∧(E), define the inner product 〈g|g̃〉1,R , 1

2

∑
ε wεg(ε)g̃(ε). Set edge weights wε to

the symmetric expression wv→v′ , 1
2 (cot∠vv1v′ + cot∠v′v2v) where v1 (resp. v2)

complete the two triangular faces adjacent to the edge v→ v′. On 0-form, define the
standard inner product 〈f |f̃〉0,

∑
v f(v)f̃(v)/Av where vertices are weighted by cell

areas Av . Define the divergence operator ∇· , −∇T as the negative adjoint of the
gradient∇. Then∇· is exactly the cotangent-weighted divergence (the sum of outbound
edge flows at v weighted by wv→v′ ) and ∆ = ∇·∇ the cotangent Laplacian. With this,
the relevant inner product 〈·|·〉1 compatible with the cotangent scheme is now specified.

C Exactness Constraint

From Appendix B, E→φ Ẽ is integrable if Ẽ is closed and orthogonal to ωkν, where
ωk spans real-valued harmonic 1-forms (k = 1 · · · b1) and ν = i, j,k, w.r.t. the inner
product on L2

∧(E), say 〈·|·〉wε
with the notations of Remark 5.
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Closedness. This is Eq. (5) and already core to the framework. Algorithmically, Eq. (8)
only guarantees the closedness to approximately hold, but we have observed very good
agreement in practice without further constraint. If necessary, closedness can be strictly
enforced as a set of 3|F| real-valued constraints (3 imaginary dimensions, |F| faces),
e.g. by linearizing Im(φ̄iDφi)=0 around the current solution.

Exactness. Exactness is guaranteed if Re(ν
∑
ε wεẼεω

k
ε )=0. ωε and Im(Ẽ) are alter-

nating (e.g. wij = −wji with the conventions of section 3) so this rewrites as a set of
b1 (3b1 real-valued) constraints:

Im
∑
i

φ̄i

(∑
j∼i

wijEijω
k
ijφj

)
= 0 , (12)

that can be linearized around the current solution φ. Alternatively, let us derive the
corresponding constraint on ρ. Consider a time flow φt, ρt starting at φ0 = 1, with time
derivative φ̇, ρ̇ at t= 0. Deriving w.r.t. time, Eq. (5) becomes Deφ̇ = ρ̇ and Eq. (12)
rewrites as:

2
∑
i

˙̄φi

(∑
j∼i

wijEijω
k
ij

)
= 2

∑
i

Ai
˙̄φiv

k
i ∈ R , (13)

where we use the alternating property to collapse the two sums and define vk ,∇×
(wEωk). In other words, for ν spanning ImH,

〈
φ̇
∣∣vkν〉

0,H = 0. Let zk the unique
solution to Dez

k = vk and note that De(z
kν) = (Dez

k)ν. Finally, since De is self
adjoint,

〈
φ̇
∣∣Dez

kν
〉
0,H =

〈
Deφ̇

∣∣zkν〉
0,H and we obtain:〈

δρ
∣∣zkν〉0,R = 0, k = 1 · · · b1, ν = i, j,k . (14)

where zkν are the three imaginary components of zk. The constraint can be enforced by
projection of the update δρ on the orthogonal subspace of the zkν .

To summarize:

(i) Compute the null eigenspace ω1 · · ·ωb1 of the Helmholtzian ∆1 , −∇[∇·] +
[∇×]T[∇×]

(ii) Compute vk,∇×(wEωk) and zk s.t. Dez
k=vk

(iii) Project δρ onto the orthogonal subspace of the imaginary components of zk

D Area distortion

Overview. We wish to penalize local scale changes logAi/A
0
i (i.e. Ai moving away

from the initial area distribution A0
i ), relative to the global rescaling

∑
iAi/

∑
iA

0
i .

Therefore the local scale change (with global rescaling factored out) writes as

si , logAi/A
0
i − log 〈Ai〉/〈A0

i 〉, (15)
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with 〈Ai〉 the average face area. We implement a soft constraint of the type s2i ≤ ε2,
where ε defines a tolerance for area distortion. ε can be set by the user or jointly ad-
justed over the course of the iterations. After introducing Lagrange multipliers λi, we
are looking at penalties of the form

∑
i λis

2
i /2, which we approximate by linearizing si

w.r.t. a variation δφ of the spin transformation φ. We have found this mechanism to hold
over large integration steps in practice. This can be better intuited by looking at the na-
ture of the approximations made during the linearization (see below). The approximate
quadratic energy is the sum of a sparse block diagonal matrix and a low-rank (dense)
term. Woodbury matrix identities allow to solve quadratic systems involving this energy
without directly storing or manipulating the dense matrix.

Linearization of si. We look for a linearized approximation of s̃i for a change δφ
around the spin transformation φ. We start by linearizing Eq. (4). Noting that φi+δφi =
φi(1 + φ−1i δφi), we get:

Ẽij = (1 + φ−1i δφi) · φiE0
ijφj · (1 + φ−1j δφj) (16)

= (1 + φ−1i δφi)Eij(1 + φ−1j δφj) (17)

Recalling from Appendix A that |Eij | cos (θij/2) = |eij | and taking the norm on
both sides, we get:

|ẽij | cos (θij/2) = |1 + φ−1i δφi| · |eij | cos (θ̃ij/2) · |1 + φ−1j δφj | . (18)

We can ignore the change in the cosinus of the dihedral angle (to the first order) for
simplicity. Secondly we assume 1 + φ−1δφ to be close to conformal. This assumption
is coherent with the spirit of the framework, and should hold regardless if mesh quality
is to be preserved locally in time. The overall transformation is still expected to pro-
gressively drift from quasi-conformality to accommodate area preservation. With this
we can approximate the change in area for a small variation δφ from the change in edge
length, and we get:

Ãi ≈ Ai|1 + φ−1i δφi|4 , (19)

where Ai is the area when applying φ to the initial face-edge constraint net, resp. Ãi
when applying φ+ δφ. This yields the following expression for s̃i:

s̃i = si + log |1 + φ−1i δφi|4 − log 〈|1 + φ−1δφ|4〉A (20)

= si + log
|φi + δφi|4

|φi|4
− log

〈
|φ+ δφ|4

|φ|4

〉
A

(21)

≈ si + 4

(
〈φi|δφi〉H
|φi|2

−
〈
〈φ|δφ〉H
|φ|2

〉
A

)
(22)

where 〈·〉A denotes the spatial average weighted by the face areas A, whereas 〈·|·〉H is
the inner product on quaternions. In the last expression, we made use of |δφi| � |φi|,
keeping only first order terms.
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Penalty matrix assembly. Writing the penalty as 1
2φ

TQφ− FTφ, the penalty matrix
Q is the sum of a sparse block diagonal term and 3 rank-1 terms, 42(diag(QiQ

T
i ) +

L1LT
1 − L2LT

3 − L3LT
2). The derivations are tedious but straightforward, yielding:

Fi = 4
(
〈sλ〉A−siλi

) ∣∣∣∣ ai|φi|2φi
〉

H
, Qi =

∣∣∣∣√aiλi|φi|2
φi

〉
H
, (23)

Lj1 =

∣∣∣∣∣aj
√
〈λ〉A
|φj |2

φj

〉
H

, Lj2 =

∣∣∣∣ajλj|φj |2
φj

〉
H
, Lj3 =

∣∣∣∣ aj|φj |2φj
〉

H
. (24)

with the use of bra-ket notation, and where a stands for a normalised area a,A/Atot.
The sum of rank-1 updates might be degenerate (for instance it is rank-1 if all multipli-
ers are equal). SVD decomposition can be used to derive an equivalent, non degenerate
low-rank basis of vectors.
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