Skip to main content

Learning a Conditional Generative Model for Anatomical Shape Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Abstract

We introduce a novel conditional generative model for unsupervised learning of anatomical shapes based on a conditional variational autoencoder (CVAE). Our model is specifically designed to learn latent, low-dimensional shape embeddings from point clouds of large datasets. By using a conditional framework, we are able to introduce side information to the model, leading to accurate reconstructions and providing a mechanism to control the generative process. Our network design provides invariance to similarity transformations and avoids the need to identify point correspondences between shapes. Contrary to previous discriminative approaches based on deep learning, our generative method does not only allow to produce shape descriptors from a point cloud, but also to reconstruct shapes from the embedding. We demonstrate the advantages of this approach by: (i) learning low-dimensional representations of the hippocampus and showing low reconstruction errors when projecting them back to the shape space, and (ii) demonstrating that synthetic point clouds generated by our model capture morphological differences associated to Alzheimer’s disease, to the point that they can be used to train a discriminative model for disease classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/Harry-Zhi/3DMNIST.

References

  1. Cates, J., Fletcher, P.T., Styner, M., Hazlett, H.C., Whitaker, R.: Particle-based shape analysis of multi-object complexes. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 477–485. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8_57

    Chapter  Google Scholar 

  2. Cerrolaza, J.J., et al.: 3D fetal skull reconstruction from 2DUS via deep conditional generative networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 383–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_44

    Chapter  Google Scholar 

  3. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  4. Durrleman, S., et al.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)

    Article  Google Scholar 

  5. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  6. Frisoni, G.B., et al.: Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla. Brain 131(12), 3266–3276 (2008)

    Article  Google Scholar 

  7. Gerardin, E., et al.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47(4), 1476–1486 (2009)

    Article  Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. Goparaju, A., et al.: On the evaluation and validation of off-the-shelf statistical shape modeling tools: a clinical application. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 14–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_2

    Chapter  Google Scholar 

  10. Gutiérrez-Becker, B., Wachinger, C.: Deep multi-structural shape analysis: application to neuroanatomy. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 523–531. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_60

    Chapter  Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976. IEEE (2017)

    Google Scholar 

  12. Jack, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  13. Kendall, D.G.: A survey of the statistical theory of shape. Stat. Sci. 4(2), 87–99 (1989)

    Article  MathSciNet  Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  16. Miller, M.I., Younes, L., Trouvé, A.: Diffeomorphometry and geodesic positioning systems for human anatomy. Technology 2(01), 36–43 (2014)

    Article  Google Scholar 

  17. Ng, B., Toews, M., Durrleman, S., Shi, Y.: Shape analysis for brain structures. In: Li, S., Tavares, J.M.R.S. (eds.) Shape Analysis in Medical Image Analysis. LNCVB, vol. 14, pp. 3–49. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03813-1_1

    Chapter  Google Scholar 

  18. Pizer, S.M., et al.: Nested sphere statistics of skeletal models. In: Breuß, M., Bruckstein, A., Maragos, P. (eds.) Innovations for Shape Analysis. MATHVISUAL, pp. 93–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34141-0_5

    Chapter  Google Scholar 

  19. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), vol. 1, no. 2, p. 4. IEEE (2017)

    Google Scholar 

  20. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  Google Scholar 

  21. Shakeri, M., Lombaert, H., Tripathi, S., Kadoury, S.: Deep spectral-based shape features for Alzheimer’s disease classification. In: Reuter, M., Wachinger, C., Lombaert, H. (eds.) SeSAMI 2016. LNCS, vol. 10126, pp. 15–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51237-2_2

    Chapter  Google Scholar 

  22. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)

    Google Scholar 

  23. Wachinger, C., Golland, P., Kremen, W., Fischl, B., Reuter, M.: BrainPrint: a discriminative characterization of brain morphology. Neuroimage 109, 232–248 (2015)

    Article  Google Scholar 

  24. Wachinger, C., Rieckmann, A., Reuter, M.: Latent processes governing neuroanatomical change in aging and dementia. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 30–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_4

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by DFG and the Bavarian State Ministry of Education, Science and the Arts in the framework of the Centre Digitalisation. Bavaria (ZD.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamín Gutiérrez-Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutiérrez-Becker, B., Wachinger, C. (2019). Learning a Conditional Generative Model for Anatomical Shape Analysis. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics