Skip to main content

Simultaneous Spatial-Temporal Decomposition of Connectome-Scale Brain Networks by Deep Sparse Recurrent Auto-Encoders

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

Exploring the spatial patterns and temporal dynamics of human brain activities has long been a great topic, yet development of a unified spatial-temporal model for such purpose is still challenging. To better understand brain networks based on fMRI data and inspired by the success in applying deep learning for brain encoding/decoding, we propose a novel deep sparse recurrent auto-encoder (DSRAE) in an unsupervised spatial-temporal way to learn spatial and temporal patterns of brain networks jointly. The proposed DSRAE has been validated on the publicly available human connectome project (HCP) fMRI datasets with promising results. To our best knowledge, the proposed DSRAE is among the early unified models that can extract connectome-scale spatial-temporal networks from 4D fMRI data simultaneously.

Q. Li and Q. Dong—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008)

    Article  Google Scholar 

  2. Luiz, P.: Understanding brain networks and brain organization. Phys. Life Rev. 11, 400–435 (2014)

    Article  Google Scholar 

  3. Friston, K.J.: Transients, metastability, and neuronal dynamics. Neuroimage 5, 164–171 (1997)

    Article  Google Scholar 

  4. Shimony, J.S., et al.: Resting state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI 16, 578 (2009)

    Google Scholar 

  5. Smith, S.M., et al.: Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. 109, 3131–3136 (2012)

    Article  Google Scholar 

  6. Lv, J., et al.: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function. IEEE TBME 62, 1120–1131 (2015)

    Google Scholar 

  7. Plis, S.M., et al.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 1–11 (2014)

    Article  Google Scholar 

  8. Hu, X., et al.: Latent source mining in FMRI via restricted Boltzmann machine. Hum. Brain Mapp. 39, 2368–2380 (2018)

    Article  Google Scholar 

  9. Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37, 1551–1561 (2018)

    Article  Google Scholar 

  10. Wang, H., et al.: Recognizing brain states using deep sparse recurrent neural network. IEEE Trans. Med. Imaging 38, 1058 (2018)

    Article  Google Scholar 

  11. Jiang, X., et al.: Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex. Hum. Brain Mapp. 36, 5301–5319 (2015)

    Article  Google Scholar 

  12. Zhang, W., et al.: Experimental comparisons of sparse dictionary learning and independent component analysis for brain network inference from fMRI Data. IEEE Trans. Biomed. Eng. 66, 289 (2018)

    Article  Google Scholar 

  13. Zhao, Yu., et al.: Modeling 4D fMRI data via spatio-temporal convolutional neural networks (ST-CNN). In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 181–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_21

    Chapter  Google Scholar 

  14. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Article  Google Scholar 

  15. Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  16. Binder, J.R., et al.: Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. Neuroimage 54, 1465–1475 (2011)

    Article  Google Scholar 

  17. Drobyshevsky, A., Baumann, S.B., Schneider, W.: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function. Neuroimage 31, 732–744 (2006)

    Article  Google Scholar 

  18. Caceres, A., et al.: Measuring fMRI reliability with the intra-class correlation coefficient Alejandro. Neuroimage 45, 758–768 (2009)

    Article  Google Scholar 

  19. Hochreiter, S., Urgen, J.J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

Download references

Acknowledgment

Q. Li was supported by the General Program of National Natural Science Foundation of China (Grant No. 61876021), Fundamental Research Funds for the Central Universities (Grant No. 2017EYT36) and the program of China Scholarships Council (No. 201806040083). T. Liu was partially supported by National Institutes of Health (DA033393, AG042599) and National Science Foundation (IIS-1149260, CBET1302089, BCS-1439051 and DBI-1564736). We thank the HCP projects for sharing their valuable fMRI datasets.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Wu or Tianming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Q. et al. (2019). Simultaneous Spatial-Temporal Decomposition of Connectome-Scale Brain Networks by Deep Sparse Recurrent Auto-Encoders. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics