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Abstract

Image representations are commonly learned from class labels, which are a simplistic 

approximation of human image understanding. In this paper we demonstrate that transferable 

representations of images can be learned without manual annotations by modeling human visual 

attention. The basis of our analyses is a unique gaze tracking dataset of sonographers performing 

routine clinical fetal anomaly screenings. Models of sonographer visual attention are learned by 

training a convolutional neural network (CNN) to predict gaze on ultrasound video frames through 

visual saliency prediction or gaze-point regression. We evaluate the transferability of the learned 

representations to the task of ultrasound standard plane detection in two contexts. Firstly, we 

perform transfer learning by fine-tuning the CNN with a limited number of labeled standard plane 

images. We find that fine-tuning the saliency predictor is superior to training from random 

initialization, with an average F1-score improvement of 9.6% overall and 15.3% for the cardiac 

planes. Secondly, we train a simple softmax regression on the feature activations of each CNN 

layer in order to evaluate the representations independently of transfer learning hyper-parameters. 

We find that the attention models derive strong representations, approaching the precision of a 

fully-supervised baseline model for all but the last layer.
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1 Introduction

When interpreting images, humans direct their attention towards semantically informative 

regions [17]. This allocation of visual attention is typically quantified via the distribution of 

gaze points, which can be recorded with gaze tracking. There has been great interest in 

developing models of human visual attention that, given an image, predict the likelihood that 

each pixel is fixated upon, hereafter referred to as visual saliency map. Currently, 

convolutional neural networks (CNNs) are the most effective visual attention models 
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(VAMs) due to their ability to learn complex feature hierarchies through end-to-end training 

[2]. Here, we explore the following question: To what extent can models of human visual 
attention transfer to tasks such as automatic image classification?

We explore this question using the application of fetal anomaly ultrasound scanning. The 

scan is performed during mid-pregnancy in order to detect fetal anomalies that require 

prenatal treatment and to determine the place, time and mode of birth. Previous work related 

to this application has focused on detecting so-called ultrasound standard imaging planes 

through fully-supervised training of image classifiers [1,3,15]. Here, in contrast, we aim to 

learn transferable representations of the scan data without manual supervision by modeling 

sonographer visual attention. To this end, we acquire the gaze of sonographers in real-time 

through unobtrusive gaze tracking alongside anomaly scan recordings.

Sonographer visual attention is modeled by training a CNN to predict gaze on random video 

frames. We consider this to be self-supervised representation learning since it does not 

require any manual annotations and gaze data is acquired fully automatically. We extract 

high-resolution image features by introducing dilated convolutions [10,19] into a recently 

proposed image classification architecture [8]. Two methods for training the model for gaze 

prediction are evaluated: (i) Visual saliency prediction: Ground truth visual saliency maps 

are generated and used as training targets [2]. (ii) Gaze-point regression: The approach of 

gaze-point regression [14] is much less explored in the literature but is simpler since it does 

not require explicit modeling of foveal vision for ground truth saliency map generation. An 

existing mathematically differentiable method is based on a fully-connected layer [14] 

which does not scale well to high-resolution feature maps due to the exponentially 

increasing number of learnable parameters. Here, we propose a method based on the soft-

argmax algorithm by Levine et al. [11] with no additional learnable parameters compared to 

saliency prediction.

The learned representations are evaluated on the task of standard plane detection in two 

contexts. (1) Transfer learning: We fine-tune the weights of the entire CNN with a limited 

number of training samples, thereby assessing the transferability of the learned 

representations in a realistic scenario. (2) Softmax regression: We fix the weights of the 

CNN and train a simple softmax regression on the spatially average-pooled feature 

activations of each layer. This procedure determines the generality of the representations 

independently of any transfer learning hyper-parameters.

Related Work. Visual saliency predictors have previously been employed to aid computer 

vision tasks. Cornia et al. [5] use a pre-trained saliency predictor as an attention module 

within an image captioning architecture. However, no representations are shared between the 

saliency predictor and the task-specific architecture. Cai et al. [3] show that saliency 

prediction can aid fetal abdominal standard plane detection. The authors fine-tune an 

existing standard plane detector [1] with manually labeled data, using saliency prediction as 

an auxiliary task and as an attention module. In contrast, we show that transferable 

representations can be learned without manual annotations via visual attention modeling 

only. Moreover, we evaluate our framework on full-length freehand clinical fetal anomaly 

scans instead of short sequences (sweeps) of the fetal abdomen.
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Within the field of unsupervised representation learning, our method is most closely related 

to self-supervised learning. The general idea is to exploit “free” supervision signals, i.e., 

supervision signals that can be extracted from the data itself without any manual annotation, 

which is comparable to our approach of using automatically acquired gaze for supervision. 

Specifically, representations are learned by either altering the data and inferring the 

alteration (e.g., spatial and color transformations [7]) or by predicting certain properties of 

the data that are withheld (e.g., the relative position of image patches [6] or the order of 

video frames [13]). However, all existing methods design artificial tasks that yield 

transferable representations as a “by-product”. Human gaze, in contrast, is inherently a 

strong prior for semantic information [17].

Contributions. Our contributions are three-fold: (1) We propose an original framework for 

self-supervised image representation learning by modeling human visual attention. The 

method does not require manual annotations, is generic, and has the potential to be applied 

in any setting where gaze tracking and image data can be acquired simultaneously. To the 

best of our knowledge, this is the first attempt to study human visual attention modeling in 

the context of self-supervised representation learning; (2) we propose a method to regress 

gaze point coordinates via the soft-argmax algorithm, which is significantly simpler and 

more computationally efficient than the existing method by Ngo et al. [14]; (3) finally, we 

evaluate the attention models on the exemplary task of fetal anomaly ultrasound standard 

plane detection, both for transfer learning and as fixed feature extractors, thus demonstrating 

the applicability to a challenging real-world medical imaging task. The framework is 

illustrated in Fig. 1 a).

2 Representation Learning by Modeling Visual Attention

In this section we describe our method of learning image representations from video and 

gaze data in general terms. Let  ⊂ ℝNc×H×W be the set of video frames with width W, 

height H and Nc channels and let  = [0, W]×[0, H] be the set of all valid gaze points. Each 

frame X ∈  has a corresponding gaze point set G = pi pi ∈ 𝒫
i = 1
NG  with NG ≥ 1. The 

dataset 𝒟 = {(X t , G t )}t = 1
Nx

 consists of Nx pairs of video frames and gaze point sets.

Let fθ: 𝒳 ℝ
N f × 1

2d H × 1
2d W

 be a CNN with Nf feature channels, 2d-fold spatial down-

sampling and learnable parameters θ. The final, classification-specific operations (global 

pooling, fully-connected layers and softmax layers) are removed from the network at this 

stage. In our experiments we use the SE-ResNeXt [8] model, but any similar feed-forward 

CNN is suitable. Since such models are designed for image classification, they perform 

strong down-sampling in order to increase the receptive field of the higher-level neurons and 

to reduce computational complexity. In contrast, for visual attention modeling, it is desirable 

to preserve spatial information throughout the network. Consequently, we remove the last 

ND down-sampling operations, i.e., max-pooling or strided convolutions. However, this 

modification reduces the receptive field of the subsequent neurons. If the down-sampling 

operations were reintroduced to restore the original architecture and use the representations 
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for classification tasks, the learned weights would be invalid. Therefore, the 3×3 

convolutions after the removed down-sampling operations are replaced with dilated 3×3 

convolutions [19] such that each convolutional kernel maintains the same receptive field as 

in the original architecture, as illustrated in Fig. 1 b). Formally, given a matrix M and the 

kernel k : [−r, r]2 ∩ ℤ2 → ℝ of size (2r + 1)2, the l-fold dilated convolution operator *l is 

defined as:

M ∗l k
i, j

= ∑
n = ‐r

r
∑

m = ‐r

r
Mi + ln, j + lm k n, m (1)

The resulting dilated CNN fθ
⊕ has the increased output resolution of 

HD, WD ≔ ( 1
2d − ND

H, 1
2d − ND

W) . Next, we want to reduce the high-dimensional feature 

activations to a single probability map that can be used to model visual attention. Hence, a 

series of adaptation layers consisting of a 7×7 depthwise convolution and several 1x1 

convolutions is appended that outputs a single activation map A ∈ ℝHD×WD. A probability 

map Ŝ is then computed by applying a softmax across the activations with Ŝi,j = eAi,j / ∑i,j 

eAi,j.

We investigate two methods of training the CNN to predict gaze in a differentiable, and 

therefore end-to-end trainable, manner: visual saliency prediction and gaze-point regression.

Visual Saliency Prediction. Given an image and a gaze point set (X, G) ∈ , the idea is to 

generate a visual saliency map S ∈ ]0, 1]H×W, where Si,j is the probability that pixel Xi,j is 

fixated upon. The saliency map is then used as the target for the predicted probability map Ŝ. 

We generate S as a sum of Gaussians around the gaze points in G, normalized such that ∑i,j 

Si,j = 1. The standard deviation of the Gaussians is equivalent to ca. 1° visual angle to 

account for the radius of visual acuity and the uncertainty of the eye tracker measurements 

[4]. Next, the saliency map is downscaled to the size of Ŝ, yielding the training target S* 

∈ ]0, 1]HD×WD. Finally, the training loss is computed via the Kullback-Leibler divergence 

(KLD) between the predicted and the downscaled true distribution:

ℒs(S*, S) = DKL(S* S) = ∑
i, j

Si, j* ⋅(log(Si, j* ) − log(S i, j)) (2)

Gaze-Point Regression. We propose a method for reducing Ŝ to a single gaze point in order 

to compare it to the true gaze points. This eliminates the need to model the probability 

distribution of gaze points via a visual saliency map. First, Ŝ is transformed into image 

coordinates via the soft-argmax algorithm [11]. With g i, j ≔ j − 0.5
WD

W , i − 0.5
HD

H  as the 

function that maps entry (i, j) of Ŝ to its corresponding point on the image plane, the 

predicted gaze point p is computed as the expected value of the probability mass function 

defined by Ŝ:
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p = ∑
i, j

S i, j g i, j (3)

Next, the target gaze point p* is obtained from the gaze point set G via the geometric 

median:

p∗ = argmin
p∗ ∈ 0, W × 0, H

∑
pi ∈ G

pi − p∗
2 (4)

This reduction is justified by the fact that the gaze points on each frame tend to be highly 

localized due to the short frame period (ca. 33 ms). Finally, the training loss is obtained as 

ℒg(p∗, p) = p∗ − p 2, i.e., the Euclidean distance between the predicted and the target gaze 

point.

3 Experiments

Data. We acquired a novel dataset of clinical fetal ultrasound exams with real-time 

sonographer gaze tracking data. The exams are performed on a GE Voluson E8 scanner 

(General Electric, USA) while the video signal of the machine’s monitor is recorded lossless 

at 30 Hz. Gaze is simultaneously recorded at 90 Hz with a Tobii Eye Tracker 4C (Tobii, 

Sweden). Ethics approval was obtained for data recording and data are stored according to 

local data governance rules. For our experiments, we use 135 fetal anomaly scans, which are 

randomly split into three equally sized subsets for cross-validation.

CNN Architecture. Recent empirical evidence suggests that ImageNet performance is 

strongly correlated with performance on other vision tasks [9]. Therefore, we base our CNN 

on SE-ResNeXt [8], a ResNet-style model with aggregated convolutions and channel 

recalibration (squeeze-and-excitation, short SE) modules, which won the 2017 ImageNet 

classification competition. For attention modeling, layers 4 and 5 are dilated as described in 

Sec. 2. In preliminary experiments we found that halving the number of feature channels 

(except for layer 0) greatly reduced the computational cost without performance losses on 

our dataset. The resulting architecture is summarized in column 1 of Table 1. Column 2 

shows SonoNet-64 [1], which we use as a reference for standard plane detection since the 

authors published network weights trained on over 22k standard plane images.

3.1 Visual Attention Modeling

Experimental methods. Two visual attention models (VAMs) were trained on the 

ultrasound video and gaze data as described in Sec. 2, namely a visual saliency predictor 

(Saliency-VAM) and a gaze-point regressor (Gaze-VAM). For pre-processing, all video 

frames that did not correspond to 2D B-mode live scanning (e.g., Doppler, 3D/4D or frozen 

frames) or without gaze data were discarded. Further, all but every 8th frame were discarded 

to reduce temporal redundancy, resulting in a total of 403 070 video frames. Next, the 

frames were cropped down to the region of the actual ultrasound image. Data augmentation 

was performed by uniformly sampling sub-crops of 70-90% side length that contained the 

gaze points, random horizontal flipping, and varying gamma and brightness by ±25%. 
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Finally, the frames were down-sampled to a size of 224×288 pixels and normalized to zero-

mean and unit-variance.

Both attention models were trained via stochastic gradient descent (SGD) with momentum 

of 0.9, weight decay of 10−4 and mini-batch size of 32. The Saliency-VAM was trained for 8 

epochs at a learning rate (LR) of 0.1 while the Gaze-VAM converged more slowly and was 

trained for 10 epochs at a LR of 0.01. In each case, the LR was decayed by a factor of 10 for 

the final two epochs. All experiments were implemented in the PyTorch framework. Each 

training run was performed in 9–16 h on a single Nvidia GTX 1080 Ti.

Results. Table 2 summarizes the quantitative evaluation of the attention models. The static 

baseline for the Saliency-VAM is the normalized sum of all ground truth saliency maps. The 

baseline for the Gaze-VAM is the geometric median of all gaze points. The learned models 

clearly outperform the static baselines on every metric. Fig. 2 shows visual saliency and gaze 

point predictions for four representative frames from the validation set. Frames 1.-3. each 

contain one anatomical structure and show examples of accurate prediction. Frame 4. 

contains several structures, which creates ambiguity.

3.2 Fetal Anomaly Standard Plane Detection

Experimental methods. For comparison with Baumgartner et al. [1], we consider the same 

13 standard plane classes and “background” class, except that our data contains the three 

vessels and trachea view (3VT) which is similar to their three-vessel view (3VV). From the 

available 135 anomaly scans, we obtained a total of 1129 standard plane frames with 62 to 

148 samples per class (a plane may be acquired twice or may be skipped in a scan). 

Moreover, we sampled 1127 background frames in the vicinity of the standard planes. The 

same scan-level three-fold cross-validation split as for attention modeling was applied. For 

pre-processing, frames were cropped to the ultrasound image region as for attention 

modeling. The images were then augmented by random horizontal flipping, rotation by 

±10°, varying the aspect-ratio by ±10%, sampling a sub-crop of 95-100% side length, and 

varying gamma and brightness by ±25%. As before, the images were down-sampled and 

normalized.

The trained visual attention models were fine-tuned (FT) on the standard plane detection 

task, yielding Saliency-FT and Gaze-FT. Moreover, two baselines were generated: A SE-

ResNeXt model trained from random initialization and a fine-tuned SonoNet-64 (SonoNet-
FT). Each epoch consisted of 1024 randomly sampled images. Analogous to Baumgartner et 

al., we overcome the class imbalance problem by sampling images from each standard plane 

class with the same frequency and sampling one background image per standard plane 

image. Fine-tuning was performed via SGD with momentum of 0.9, weight decay of 

5×10−4, mini-batch size of 16 and a cross-entropy loss. The attention models were fine-

tuned for 50 epochs with a LR of 0.01, decayed by a factor of 10 at epochs 20 and 35. For 

the randomly initialized model, the LR was increased by a factor of 4. The SonoNet model 

was initialized with pre-trained weights published by the authors and fine-tuned for 25 

epochs with a LR of 0.01, decayed at epochs 10 and 20. Longer training or higher learning 

rates led to overfitting for the latter two models due to the relatively small number of 
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training samples. Due to the class imbalance, the overall precision, recall and F1-scores were 

computed as macro-averages, i.e., the average of the scores per standard plane.

Besides fine-tuning, we trained a multinomial logistic regression (softmax regression) on the 

spatially average-pooled feature activations of each layer of the attention models and two 

baselines: an SE-ResNeXt model with random weights and the pre-trained SonoNet model. 

For each regression, the entire respective training set was sampled without augmentation. 

The classifier was trained with the L-BFGS solver and balanced class weights. The L2 

regularization parameter was selected for each regression from a range of 16 logarithmically 

spaced values from 10−5 to 101 based on the validation F1-score.

Results. A quantitative evaluation of the fine-tuned attention models is shown in Table 3. 

The Saliency-FT model improves standard plane detection compared to the model trained 

from random initialization on every metric and for each standard plane. The largest 

improvement per anatomy is observed for the right ventricular outflow tract (RVOT) with an 

average 20.8% increase in F1-score, followed by the left ventricular outflow tract (LVOT) 

and the four chamber view (4CH). Further, the average F1-score of Saliency-FT exceeds that 

of SonoNet on 3/14 classes. The Gaze-FT model under-performs compared to training from 

random initialization. In general, the average precision, recall and F1-score of SonoNet-FT 

are in good agreement with the literature values. The authors do not provide per-anatomy 

scores for SonoNet-64.

The results of the regression analysis are shown in Fig. 3 a). The scores of both attention 

models monotonously increase up to layer 4 and stagnate at layer 5, peaking at F1-scores of 

58.0 ± 1.5% for the Gaze-VAM and 64.9 ± 1.5% for the Saliency-VAM. The scores of the 

Saliency-VAM and SonoNet are at similar levels up to layer 4, while the Gaze-VAM 

achieves lower scores. For SonoNet the scores continue to increase at layer 5, reaching an 

F1-score of 79.9 ± 0.6%. In general, the scores of the random features are comparable to 

those of the other models at layers 0 and 1 but decline afterwards, peaking at an F1-score of 

49.5 ± 2.7%.

The differences between the feature embeddings are illustrated for selected layers in Fig. 3 

b) via t-SNE [12], a non-linear dimensionality reduction algorithm that visualizes high-

dimensional neighborhoods. Compared to random features, a separation of the different 

standard plane classes emerges in the embeddings of the visual attention models. However, a 

large overlap remains among the two brain views and the cardiac views, respectively. 

Moreover, the views of coronal spine, kidneys, profile and lips are not well localized. In the 

embedding of SonoNet, most classes are well-separated with overlap remaining among the 

cardiac views.

4 Discussion and Conclusion

The evaluations have shown that the visual attention models have learned meaningful 

representations of ultrasound image data, which was the main goal of this work. In the 

transfer learning context, the Saliency-FT model clearly outperforms the model trained from 

random initialization. The largest benefit is observed for the cardiac views with an average 
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increase in F1-score of 15.3%. In fact, the performance of Saliency-FT is closer to that of 

SonoNet-FT, although the latter had been pre-trained with over 22k labeled standard plane 

images, while the attention models are pre-trained only with sonographer gaze on unlabeled 

video frames. Since fine-tuning is performed with 753 standard plane images on average, 

this is a 30-fold reduction in the amount of manually annotated training data. Gaze-FT did 

not yield an improvement, indicating that visual saliency prediction is better suited to learn 

transferable representations.

Even without fine-tuning, the high-level features of the attention models are predictive for 

fetal anomaly standard plane detection, outperforming the baseline with random weights for 

softmax regression on the feature activations. Up to last network layer, the features of the 

Saliency-VAM are almost as predictive as those of SonoNet, even though it had received no 

explicit information about the concept of standard planes during training. This confirms our 

hypothesis, motivated by Wu et al. [17], that gaze is a strong prior for semantic information. 

At the last layer, the attention models fall behind SonoNet, indicating the task-specificity of 

that layer. The qualitative analysis through t-SNE confirms that some standard plane classes 

are well-separated in the respective feature spaces of the attention models, with overlap 

remaining for standard planes with similar appearance such as the brain views and the 

cardiac views, respectively. It should be noted that we did not compare our models to a 

recently proposed variation of SonoNet [15] with multi-layer attention-gating due to the 

added complexity of that architecture.

The results for both visual saliency prediction and gaze-point regression indicate successful 

learning of sonographer visual attention. This is supported by the fact that the scores on the 

key metrics of AUC and NSS are higher than the scores reported by Cai et al. [3] and than 

typical scores on the public MIT Saliency Benchmark of natural images (saliency.mit.edu). 

However, our scores on the CC, SIM and KLD metrics are worse compared to these sources 

and in general, the comparability is very limited since the maximum attainable values are 

dataset-dependent. For gaze-point regression, the proposed method based on the soft-argmax 

algorithm was found to be an effective solution.

In conclusion, we have shown that visual attention modeling is a promising method to learn 

image representations without manual supervision. The trained CNNs generalize well to the 

task of fetal anomaly standard plane detection, both for transfer learning and as fixed feature 

extractors. We have evaluated two methods for visual attention modeling, visual saliency 

prediction and gaze-point regression, and found that the representations learned with the 

former method generalize better. The representation learning framework presented herein is 

generic and therefore has the potential to be applied in many settings where gaze and image 

data can be readily acquired.
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Fig. 1. 
a) Illustration of our framework for learning and evaluating visual attention models (VAMs). 

b) The upper part illustrates a dilated convolution after removed down-sampling operation. 

When the down-sampling operation is reintroduced for classification as shown in the lower 

part, the dilation is removed from the kernel without changing the learned kernel weights. 

The receptive field of the corresponding output neurons is unchanged and the operation is 

reversible.
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Fig. 2. 
Visual saliency and gaze point predictions with corresponding ground truths for 

representative validation set frames.
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Fig. 3. 
a) Results of the regression analysis of the fixed-weight attention models, and baselines. b) t-

SNE visualization of the feature embeddings at the respective layers with the highest F1-

score (Background class omitted for legibility). Best viewed in color.
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Table 1

SE-ResNeXt-50 (half-width) [18] and SonoNet-64 [1] (variant of VGG-16 [16]) architectures. Convolutional 

layers are denoted as ‘conv <kernel-size>, <output-channels>[, <C =cardinality>]’, where cardinality is the 

number of grouped convolutions. SE modules are denoted as ‘fc’ followed by the dimensions of the 

corresponding fully-connected layers. Scales in parentheses correspond to the dilated networks for attention 

modeling. The lower part of the table shows the heads for attention modeling and classification, respectively.

Layer name

SE-ResNeXt-50 (half-width, 7.4M parameters) SonoNet-64 (14.9M parameters)

Scale Layers Scale Layers

layer 1
224 × 288 conv, 7 × 7, 64, stride 2

224 × 288 [conv, 3 × 3, 64] × 2
112 × 144 max pool, 3, stride 2

layer 2 56 × 72

conv, 1 × 1, 64
conv, 3 × 3, 64, C = 16
conv, 1 × 1, 128
f c, 8, 128

× 3 112 × 144 [conv, 3 × 3, 128] × 2

layer 3 28 × 36

conv, 1 × 1, 128
conv, 3 × 3, 128, C = 16
conv, 1 × 1, 256
f c, 16, 256

× 4 56 × 72 [conv, 3 × 3, 256] × 3

layer 4 14 × 18
(28 × 36)

conv, 1 × 1, 256
conv, 3 × 3, 256, C = 16
conv, 1 × 1, 512
f c, 32, 512

× 6 28 × 36 [conv, 3 × 3, 512] × 3

layer 5 7 × 9
(28 × 36)

conv, 1 × 1, 512
conv, 3 × 3, 512, C = 16
conv, 1 × 1, 1024
f c, 64, 1024

× 3 14 × 18 [conv, 3 × 3, 512] × 3

adaptation (attention) 28 × 36
conv 7 × 7, 1024, C = 1024
[conv 1 × 1, 256] × 2
conv 1 × 1, 1

   — —

adaptation (classification) 7 × 9
conv 1 × 1, 256
conv 1 × 1, NC
avg. pool and softmax

14 × 18
conv 1 × 1, 256
conv 1 × 1, NC
avg. pool and softmax
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Table 2

Results of visual saliency prediction and gaze-point regression compared to static baselines (mean ± standard 

deviation). Next to the training loss (KLD), the Saliency-VAM is evaluated on the metrics normalized scanpath 

saliency (NSS), AUC-Judd, Pearson’s correlation coefficient (CC) and histogram intersection (SIM) (for 

references see [2]). Best values are marked bold.

Saliency-VAM Gaze-VAM

KLD NSS AUC [%] CC [%] SIM [%] ℓ2-norm

Static 3.41 ±0.02 1.39 ±0.05 85.9 ±0.3 14.9 ±0.4   8.5 ±0.1 54.4 ±0.6

Learned 2.43 ±0.03 4.03 ±0.05 96.7 ±0.2 31.6 ±0.3 18.5 ±0.2 27.4 ±0.4
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Table 3

Standard plane detection results after fine-tuning (mean ± standard deviation [%]). Rand. Init. denotes the SE-

ResNeXt model trained from scratch. The best score among the first three models is marked in bold. Scores of 

the fine-tuned SonoNet that exceed all three models are marked in bold as well. The literature SonoNet scores 

are given in parenthesis.

Rand. Init. Gaze-FT Saliency-FT Δ(Saliency, Rand. Init.) SonoNet-FT (Lit. value [1])

Precision 70.4 ± 2.3 67.2 ± 3.4 79.5 ± 1.7   9.1 ± 2.1 82.3 ± 1.3 (81)

Recall 64.9 ± 1.6 57.3 ± 4.5 75.1 ± 3.4 10.2 ± 1.9 87.3 ± 1.1 (86)

F1-score 67.0 ± 1.3 60.7 ± 3.9 76.6 ± 2.6   9.6 ± 2.1 84.5 ± 0.9 (83)

F1-scores per class: ↓

RVOT 37.9 ± 3.8 30.4 ± 4.9 58.7 ± 2.7 20.8 ± 5.5 71.2 ± 2.8

LVOT 30.3 ± 4.7 25.8 ± 5.9 48.6 ± 3.3 18.4 ± 7.3 69.9 ± 5.3

4CH 43.1 ± 6.7 33.5 ± 8.5 57.3 ±10.8 14.2 ±11.9 75.7 ± 9.1

Kidneys 71.4 ± 5.5 68.5 ±12.1 84.7 ± 6.3 13.3 ± 5.7 81.0 ± 5.0

Profile 77.5 ± 7.2 61.7 ± 7.7 87.2 ± 7.5   9.7 ± 3.7 88.1 ± 4.5

Lips 76.7 ± 2.6 74.2 ± 7.3 85.6 ± 4.5   8.8 ± 6.7 92.9 ± 0.8

Brain (Cb.) 84.9 ± 7.0 83.2 ± 1.5 93.7 ± 4.6   8.8 ± 2.3 92.8 ± 1.1

3VT 50.4 ± 1.9 47.1 ± 7.1 58.3 ± 7.1   7.9 ± 5.6 77.9 ± 1.6

Brain (Tv.) 86.1 ± 7.7 88.8 ± 2.8 92.9 ± 5.0   6.8 ± 2.8 92.1 ± 4.5

Spine (cor.) 72.9 ± 3.6 57.2 ± 2.8 79.0 ± 3.7   6.1 ± 6.2 90.3 ± 4.9

Abdominal 67.9 ± 5.1 60.8 ± 6.7 72.9 ± 2.9   5.0 ± 3.7 85.0 ± 1.4

Spine (sag.) 86.5 ± 3.5 80.2 ± 2.5 89.1 ± 2.1   2.7 ± 5.2 91.6 ± 2.5

Femur 85.7 ± 2.0 77.7 ± 0.1 87.6 ± 1.3   1.9 ± 1.5 89.5 ± 1.8

Background 85.2 ± 0.9 83.3 ± 0.7 89.0 ± 0.4   3.8 ± 1.2 90.3 ± 0.4

RVOT: right ventricular outflow tract; LVOT: left ventricular outflow tract; 4CH: four chamber view; 3VT: three vessel and trachea view; Brain 
(Cb.): brain cerebellum suboccipitobregmatic plane; Brain (Tv.): brain transventricular plane; Cor.: Coronal plane; Sag.: Sagittal plane.
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