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Abstract

Fusing multimodal brain image features to empower statistical analysis has attracted considerable 

research interest. Generally, a feature mapping is learned in the fusion process so the cross-

modality relationship in the multimodal data can be more effectively extracted in a common 

feature space. Most of the prior work achieve this goal by data-driven approaches without 

considering the geometry properties of the feature spaces where the data are embedded. It results 

in a huge sacrifice of untapped information. Here, we propose to fuse the multimodal brain images 

through a novel geometric approach. The key idea is to encode various brain image features with 

the local metric change on brain shapes, such that the feature mapping can be efficiently solved by 

some geometric mapping functions, i.e., quasiconformal and harmonic mappings. We approach 

our multimodal fusion framework (MFRM) in two steps: surface feature mapping and volumetric 

feature mapping. For each of them, we design an informative Riemannian metric based on distinct 

brain anatomical features and achieve image fusion via diffeomorphic maps. We evaluate our 

proposed method on two brain image cohorts. The experimental results reveal the effectiveness of 

our proposed framework which yields better statistical performances than state-of-the-art data-

driven methods.
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1 Introduction

The proliferation of multimodal brain image data helps researchers better understand the 

neurobiology of psychiatric and neurological disorders than learning from a single modality. 

Generally, multimodal neuroimaging data may contain images with different resolutions and 

dimensions, thus it is natural to design the feature mappings from different modality data to 

a common feature space. The cross-modality relationship is thus extracted and projected to 

that latent space during the feature mapping and later can be fed to the statistical analysis. 

The widely applied multimodal fusion methods, such as mutual information [17], 

independent component analysis (ICA) [4], multiple kernel learning [19], etc, use either 
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information theory or machine learning techniques in the data-driven fashion to build feature 

mappings. However, these methods ignore the intrinsic structural relationship between brain 

image data sources, e.g. geometric properties of brain shapes. It results in a huge sacrifice of 

untapped information. Hence, developing effective computational frameworks to transform 

multimodal multi-dimensional neuroimaging data into integrated, informative biological 

knowledge remains an open problem.

Fusing multimodal imaging data to improve statistical analysis calls for a feature mapping to 

a common latent feature space. For example, a typical strategy is to find a canonical 

parameter space, e.g. a chosen shape template, and compute the intermediate mappings to 

that parameter space [1]. However, due to the diversity of multimodal features, e.g., 

structural features such as cortical thickness or white matter integrity, it is non-trivial to 

search for such a common feature space. Inspired by research in [9], we integrate imaging 

features from different modalities by using a concept from geometry research, i.e. 

Riemannian metrics, and construct a common feature space. In Riemannian geometry, the 

Riemannian metric is a family of positive definite inner products defined on a differentiable 

manifold. A manifold could have an infinite number of Riemannian metrics representing 

specific geometric functions. For example, Fig. 1 (A) shows how different Riemannian 

metrics determine different geodesic curves on a human facial surface. Our main idea is as 

follows. First, we adjust the Riemannian metrics defined on the original mesh to obtain the 

feature embeddings. In the end, we pursue physically natural and geometrically intrinsic 

harmonic map solutions to register the feature-encoded metrics to the same canonical space 

(i.e., a unit ball domain). The multimodal fusion problem thereby can be solved by geometry 

registration approaches.

In this paper, we are interested in fusing two magnetic resonance imaging (MRI) modalities, 

i.e., structural MRI (sMRI) and diffusion MRI (dMRI). The sMRI provides the 

morphometric information on grey matter (GM) on the cortical surface whereas dMRI 

provides additional information to model white matter (WM) integrity in the interior of the 

brain. The GM geometry and WM integrity play vital roles during brain developmental and 

pathological processes [5,2] and they are the anatomical foundation of brain cognitive 

functions. There are a few attempts to model the high-level relationship between these two 

modalities. Tozer et al. [15] developed a methodology to find correspondences between WM 

fiber tracts and the GM regions linked by these fiber tracts. Savadjiev et al. [12] integrated 

multi-scale geometric properties of WM and cortical surface by using mutual information. 

However, the aforementioned studies are more interested in GM regions which are 

anatomically connected by WM fibers but did not aim to deal with the whole brain 

anatomical fusion, in general.

Here, we propose to adopt the Riemannian metric to model the intrinsic relationship 

between GM and WM anatomical features. We develop a practical algorithm to compute 

quasiconformal and harmonic maps under designed metrics carrying information from sMRI 

and dMRI data. In the experiments, we apply our algorithm to classify patients of 

Alzheimer’s disease (AD), mild cognitive impairment (MCI) and Schizophrenia (SCZ) from 

normal control subjects and the results demonstrate considerable promise. Our main 

contributions are as follows. 1) Our work shows that the multimodal fusion problem for 
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volumetric neuroimaging data can be tackled using geometry methods with defined 

Riemannian metrics. 2) We design a unified multimodal fusion framework that maps both 

surface and volume features to a shared parameterization domain. 3) We validate the 

effectiveness of our framework on different datasets and achieve significantly better 

performance than some state-of-the-art methods.

2 Theoretical Background

2.1 Surface Quasiconformal Mapping

A diffeomorphism ϕ : (M1, g1) → (M2, g2) is a conformal mapping between two 

Riemannian manifolds if it preserves the first fundamental form of M1, up to a scaling 

factor. Every conformal mapping is an angle-preserving mapping that preserves the local 

geometry of the surface. One generalization of a conformal mapping is a quasiconformal 
map, which is an orientation-preserving diffeomorphism between Riemann surfaces with 

bounded conformality distortion [10]. Its first order approximations takes small circles to 

small ellipses of bounded eccentricity. Mathematically, given a mapping ϕ, and z and w to be 

the local conformal parameters of manifolds (M1, g1) and (M2, g2), respectively, such that 

g1 = e
2u1dzdz, g2 = e

2u2dwdw, then we say ϕ is quasi-conformal if it satisfies the Beltrami 

equation:

∂ϕ
∂z = μ(z)∂ϕ

∂z , (1)

for complex valued functions μ(z) satisfying ∥ μ ∥∞ < 1. μ is called Beltrami coefficient 

(BC). The ratio between two axes of the ellipse is called dilation given by K = 1 + | μ(z)|
1 − | μ(z)|  and 

the orientation of the axis is arg(μ(z)). Thus, the BC μ gives us important information about 

the properties of the map. Fig. 1 (B) shows a quasiconformal map from a circle to an ellipse. 

Given a BC μ : ℂ ℂ with ∥ μ ∥∞ < 1, there is always a quasiconformal mapping from a 

complex plane C onto itself which satisfied Eq. 1 [7]. The following theory provides 

computation of quasiconformal mapping with designed Riemannian metric.

Theorem 1 ([18]). Suppose f : (M, gm) → (N, gn) is a quasiconformal mapping associated 

with the BC μ. gm = σ(z)dzdz and gn = ρ(w)dwdw. There is a well defined auxiliary 

Riemannian metric on M :gm = eσ(z) |dz + μdz|2 such that the mapping f : M, gm N, gn  is a 

conformal mapping.

2.2 Volumetric Harmonic Map

Suppose M is a simplicial complex, and g : | M | ℝ3 a function that embeds |M| in ℝ3, then 

(M, g) is called a mesh. For a 3-simplex, it is a tetrahedral mesh, Te, and for a 2-simplex, it 

is a triangular mesh, Tr. The boundary of a tetrahedral mesh is a triangular mesh, Tr = ∂Te.

Definition 1 (Discrete Harmonic Energy). Suppose a piecewise linear function f ∈ 
CPL(M), the discrete harmonic energy is defined as :
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E( f ) = < f , f > = ∑
[u, v] ∈ K

k(u, v)‖ f (u) − f (v)‖2 . (2)

Suppose that edge eu, v = [u, v] is shared by n tetrahedrons, the string constant [16] is 

formulated as:

k(u, v) = 1
12 ∑

i = 1

n
licot θi , (3)

where li is the length of edge ei to which edge eu, v is against and θi is the dihedral angles 

associate with the edge ei ( Fig. 1 (C)). By changing k(u, v) in Eq. 2, we can define different 

volumetric harmonic maps.

3 Algorithms

Fig. 2 shows our multimodal brain image fusion framework (MFRM). Mathematically, given 

a brain volumetric mesh, M, where its surface is ∂M and interior is M\∂M, we want to 

compute a feature mapping f M = f ∂M, f M\ ∂M 𝔻 to a common feature domain 𝔻, i.e., a 

unit ball. It can be divided into two steps: 1) surface feature mapping f∂M for the cortical 

morphometric features, and 2) the volumetric feature mapping fM\∂M for WM anatomical 

features.

In the first part, we have a spherical surface feature mapping

f ∂M(v):τsur f g∂M, F ∂M(v) 𝕊2 . (4)

We encode the vertex-wise surface features F∂M(v), e.g. Gaussian curvature and cortical 

thickness, to the initial Riemannian metric g∂M by using an feature embedding function τsurf 

(.) and obtain a new metric g∂M. Then, a conformal mapping is computed to get the 

spherical (𝕊2) parameterization of g∂M. Here, τsurf (.) is learned with the optimized BC. 

Therefore, the variations of BC make the conformal mapping, i.e. spherical conformal 

mapping, to be the quasiconformal mapping. Details about BC variations in τsurf (.) can be 

found in Alg. 1.

The second part of the proposed framework is a volumetric feature mapping,

f M\ ∂M(v):τvol gM\ ∂M, FM\ ∂M(v) 𝕊3,  s . t .   f ∂M . (5)

In this mapping, the spherical parameterization in the surface feature mapping, i.e. f∂M is the 

boundary constraint. Thus, the two steps of feature mapping in our framework are 

geometrically associated together. By changing the edge weights in the string constant k(u, 
v) in Eq. 3, we are able to embed the volumetric feature, e.g. white matter integrity, to the 
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initial metric on tetrahedron meshes. We then learn the volumetric parameterization through 

the harmonic mapping to a unit ball domain (𝕊3). Details are shown in Alg. 2.

3.1 Surface Feature Mapping

As outlined in Theorem 1, we model the surface feature fusion with quasiconformal 

mappings. Commonly, in geometry registration, with spherical conformal mapping, the 

source and target brain cortical surfaces are both mapped to a sphere and then we search for 

the point-wise correspondence on the sphere domain. This process relies on Riemannian 

metrics on the source and target surface. Here, we extend the idea of geometric mapping to 

the feature mapping where we design the new metrics accounting for the brain imaging 

features. We deform the initial metrics of the brain shapes to obtain the new metrics such 

that the conformal mapping between the new metrics minimizes the vertex-wise difference 

of features. We notice that the local distortion or shrinkage can be controlled by the BC and 

thus the feature mapping can be solved with the quasiconformal mapping. The conformal 

mapping between the new Riemannian metrics is equivalent to the quasiconformal mapping 

between the initial Riemannian metrics.

The relation between BC and quasiconformal mapping is unique. Let f : 𝕊2 𝕊2 be any 

diffeomorphism of the sphere 𝕊2. Picking any 3-point correspondence 

a, b, c ∈ 𝕊2 f (a), f (b), f (c) ∈ 𝕊2 , there exist two unique Möbius transformations ϕ1 and 

ϕ2 that map {a, b, c} and {f(a), f(b), f(c)} to 0,1, ∞ respectively. Then, the composition map 

f : = ϕ2 ∘ f ∘ ϕ1
−1 is a diffeomorphism of 𝕊2 that fix 0, 1, ∞. There is a one-to-one 

correspondence between the set of diffeomorphisms {f(t)} of 𝕊2 fixing 0, 1, ∞ and the set of 

BCs {μ(t)} on 𝕊2 with ∥ μ ∥∞ < 1. Given a diffeomorphism f of 𝕊2 with the fixed point 

correspondence, we can represent f uniquely by a BC.

Theorem 2 ([3]). Let {μ(t)(z)} be the set of BCs at point z ∈ ℂ depending on a real or 

complex parameter t. The variation of μ(t)(z) can be written as:

μ(t)(z) = μ(z) + tν(z) + tσ(t)(z) . (6)

When t → 0, ∥ σ(t) ∥∞ → 0. Then for all w ∈ ℂ, we can formulate the variation of the 

diffeomorphism f as:
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f μ(t)
(w) = f μ(w) + tV f μ, ν (w) + o( t ), (7)

locally uniformly on ℂ as t → 0, where

V f μ, ν (w) = − f μ(w) f μ(w) − 1
π × ∫

ℂ

ν(z) f z
μ(z) 2

f μ(z) f μ(z) − 1 f μ(z) − f μ(w)
dz . (8)

We further reformulate Eq. 8 as:

V f μ, ν (w) = A(μ(ω))∫
ℂ

G1ν1 + G2ν2
G3ν1 + G4ν2

dz, (9)

where v = v1 + iv2 and G1, G2, G3, G4 are real-valued functions defined on ℂ. In this paper, 

we use 
a
b

 to indicate complex value a + ib. Eq. 7 links the variation of the BC, μ(t), with the 

variation of the diffeomorphism f μ(t)
. In other words, the quasiconformal mapping can be 

conveniently solved by adjusting the BC values with a variational formula.

Given any energy function E(f) defined on the space of surface diffeomorphisms f, we re-

define it as E(μ) on the parameter domain of a sphere, which is an extended complex plane 

obtained by using the stereographic projection. We first formulate an energy function 

defined on the space of BC over the conformal parameter domain C, as:

E(μ) = ∫
C

F(ω) − F f μ(ω) 2 + | μ(ω) |2dω . (10)

The optimization of minimizing E(μ) can be approximated by the gradient descent approach. 

We derived the Euler-Lagrange equation based on Eq. 7 and Eq. 9, as follow:

d
dt t = 0E(μ + tν) = − ∫

C
2 F − F f μ ∇F f μ d

dt t = 0 f μ + tν − 2μ ⋅ νdω

= − ∫
C

A ⋅ ∫
D

G(z, ν, ω, μ) ⋅ ν(z)dz − 2μ(ω) ⋅ ν(ω) dω

= − ∫
C
∫

D

G1a1 + G3a2
G2a1 + G4a2

dω − 2μ(z) ⋅ ν(z)dz,

(11)

where A = a1 + ia2 = 2 F − F f μ ∇F f μ . Therefore, we could derive the descent direction 

for μ as follow:

dμ(ω)
dt = ∫

C

G1a1 + G3a2
G2a1 + G4a2

dz − 2μ . (12)
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We note that this is a general quasiconformal mapping framework. In this study, we design 

our energy function by considering two important geometric features on the cortex of the 

human brain, i.e., curvature F1 (ω) and cortical thickness F2(ω). The final energy function is:

E(μ) = α∫
C

F1 − F1 f μ 2 + β∫
C

F2 − F2 f μ 2 + | μ(ω) |2dω (13)

and update μ to optimize min E(μ) as:

μn + 1 − μn = dt∫
C

G1G3
G2G4

⋅
αa1 + βb1
αa2 + βb2

dz − 2(α + β)μ, (14)

where a1 + ia2 = 2 F1 − F1 f μ ∇F1 f μ  and b1 + ib2 = 2 F2 − F2 f μ ∇F2 f μ . The detailed 

computational algorithm is summarized in Alg. 1

3.2 Volumetric Feature Mapping

With the surface quasiconformal mapping in the previous part as the boundary condition, we 

further design a volumetric feature mapping by using volumetric harmonic map. We first 

create a tetrahedral mesh based on the cortical surface to model geometry of the brain 

interior. Then the voxel-wise geometric features computed from dMRI are projected onto the 

mesh vertexes. In this study, we use three important features, i.e., FA (fractional anisotropy), 

MD (mean diffusivity) and B0 (raw T2 signal with no diffusion weighting), which are 

widely applied in dMRI-based neuroimaging analyses [8]. Given a vertex v in the tetrahedral 

mesh M, we define a feature vector F(v) = [FA(v), MD(v), B0(v)] and each element is scaled 

independently by the largest value of this feature among voxels in a brain. Recall the 

harmonic energy defined on a tetrahedral mesh:

E( f ) = ∑
[u, v] ∈ K

k(u, v)‖ f (u) − f (v)‖2 . (15)

By changing the string constants k(u, v) in Eq. 3, we can define different string energies. For 

the proposed vertex-wise DTI feature, we design a new metric based on the cosine similarity 

to evaluate feature difference and adopt it into the original string constant as:
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k (u, v) = e
DAng(F(u), F(v))

k(u, v), (16)

where DAng(F(u), F(v)) = 1
π cos−1 F(u) ⋅ F(v)

F(u) 2 F(v) 2
. If features of two vertexes are similar, the 

new string parameter k (u, v) = k(u, v). If their features are totally distinct, k (u, v) = ek(u, v).

Lemma 1. A volumetric harmonic map with the new harmonic energy defined with Eq. 15 

and Eq. 16 induces diffeomorphism.

Proof. As the newly defined harmonic energy has a string constant bounded by 

k(u, v) < k(u, v) < ek(u, v) where k(u, v) is strictly positive due to acute dihedral angles in 

every tetrahedron, the energy defined with Eq. 15 is a harmonic energy. Since the spherical 

boundary induces a convex boundary, a harmonic map using Eq. 15 and 16 has a global 

minimum which induces diffeomorphism between source and target volumes [13]. □

Suppose a mapping f : M ℝ3 minimize the given string energy E(f), it can be solved with 

the steepest descent method by iteratively updating along the direction

d f (t)
dt = − Δ f (t), t ∈ M . (17)

Δf(t) is the tangential component of the piecewise Laplacian of f, ΔPL(f).

Definition 2. The piecewise Laplacian is the linear operator ΔPL : CPL → CPL on the space 

of piecewise linear functions f on M, defined by the formula

△PL ( f ) = ∑
u, v ∈ K

k(u, v)( f (v) − f (u)) . (18)

For a map f : M ℝ3, the piecewise Laplacian of f = (f1, f2, f3) is ΔPL(f) = (ΔPL(f1), ΔPL(f2), 

ΔPL(f3)).

The detailed volumetric feature mapping algorithm is summarized in Alg. 2.

4 Experiments

4.1 Datasets and Experimental Setting

To evaluate the effectiveness of our MFRM framework, we conduct disease classifications 

on two independent datasets which contain subjects from AD study and SCZ study, 

respectively. Dataset 1 is a subset of Alzheimers Disease Neuroimaging Initiative (ADNI), 

the second stage of the Northern American ADNI (http://adni.loni.usc.edu). There are 120 

subjects, including 42 normal controls (NCs), 46 MCIs and 32 AD patients. Dataset 2 

contains the multimodal data for SCZ studies collected by COBRE (http://cobre.mrn.org/). It 

contains 100 subjects, 50 of them are SCZ sufferers and the rest are matched NCs. In both 

datasets, brain images with sMRI and dMRI modalities are provided. We extract cortical 
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surfaces from sMRI images by using FreeSurfer toolbox (https://

surfer.nmr.mgh.harvard.edu) and then compute the vertex-wise structural features such as 

the cortical thickness and curvatures on the extracted GM/WM boundary. The dMRI images 

were processed using the FSL toolbox (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and WM 

integrity features, e.g. FA, MD and B0, are measured. The cortical and WM structural 

features are then mapped to the FreeSurfer space for consistency. The hyper-parameters α 
and β in Eq. 13 are both empirically chosen to be 10. We apply linear SVM in Statistics and 

Machine Learning Toolbox of MATLAB (http://www.mathworks.com) as the classifier to 

perform disease classifications. Experiment results of accuracy, F1 scores and ROC curves 

with 5-fold cross validation are reported.

We compare the performance of our proposed framework with some state-of-the-art 

multimodal fusion methods as well as the variant of our model: RawFA: It is the non-fusion 

model. Raw individual FA features have been aligned to the template. Then PCA works on 

the new FA maps for feature dimension reduction. PCA+jICA [4]: It is the state-of-the-art 

method for data-driven fusion of multimodal data. FA, MD, B0 and T1 maps are fused with 

this method after being registered to the same space. mCCA+jICA [14]: Another state-of-

the-art method uses canonical correlation analysis and ICA to extract both shared and 

distinct properties across modalities. pFused: A variant version of our method that fuses 

cortical features without considering the feature mapping between WM structures. It is the 

partial fusion model which is merely based on the mapping from cortical surface fusion. 

HPvol: Measures of the hippocampal volume which is an ROI feature typically used in AD 

prediction. In our MFRM method, we map FA volume images to the template based on the 

feature mapping and recompute the distribution of FA values. Thus each subject eventually 

obtains a point-wise FA feature map as the new representation.

4.2 Results

On Dataset 1, we conduct 2 kinds of classifications, i.e. binary classification and multilabel 

classification, to distinguish AD, MCI and NC. Statistical validation results are given in 

Table 1 and Fig. 3. MFRM reaches 85% accuracy in AD vs. NC, 79% accuracy in AD vs. 

MCI, 66% accuracy in MCI vs. NC and 62% accuracy in AD vs. MCI vs. NC. Compared to 

the state-of-the-art methods, our method has the relatively better performance. For example, 

in AD vs. NC classification, MFRM boosts the accuracy of performance by around 16% 

compared to PCA+jICA and 29% compared to mCCA+jICA. The similar trends are 

observed in other binary classification tasks. Moreover, MFRM yields significant 

improvements over the non-fused model (RawFA) by raising the accuracy nearly 34% in 

classifying AD and NC. It is also better than the partial fusion model (pFused) with an 

accuracy increase of around 8%. It is consistent with discoveries of previous research that 

disease-related brain structural alterations are partially represented by cortical or WM 

geometry properties [2]. Generally, performance on MCI classification tasks is worse than 

that on AD classification but our method still achieves superior accuracy compared with 

other methods. On Dataset 2, we carry out a binary classification task for Schizophrenia 

disease and shows the performance of all the compared methods on Table. 2. Similar to AD 

results, MFRM significantly outperforms other competing methods. Features learned from 

MFRM increase the accuracy as opposed to the partial fusion model by 7% and to the state-
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of-the-art methods by 15%. Together with the results on dataset 1, the proposed multimodal 

fusion framework beats other methods with significant improvements in performance on 

brain disease classification.

The above results suggest that, after the feature mapping, raw features from the same group 

become closer to each other and those from different groups are driven away from each 

other. We further confirm this observation by comparing the pair-wise similarities among the 

ADNI cohort. We compute the earth mover’s distances (EMD) [6] between the fused 

features of each two subjects and compare the result with those from unfused features. Fig. 4 

shows the distance matrices. After the MFRM fusion, intra-class features indeed become 

relatively closer to each other and inter-class features become far away from each other.

5 Conclusion and Future Work

This paper describes a geometric framework for solving a multimodal brain images fusion 

problem. By varying Riemannian metrics to encode multimodal brain imaging features, we 

build the feature mapping efficiently with geometric registration methods, i.e., 

quasiconformal mapping and harmonic mapping. There are several interesting directions for 

the future work. For example, we can apply the idea of changing Riemannian metrics for 

feature mapping to the analysis in brain ROIs. Besides, the variational framework designed 

on top of the Riemannian metrics in the Euclidean space can be extended to metrics in other 

geometric spaces, e.g., the hyperbolic space. Lastly, some other modalities, such as 

functional MR images or electroencephalography, can be the additional information sources 

to brain structural data and fused features derived from these modalities may contribute to 

the exploration of sensitive disease-related biomarkers.
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Fig. 1: 
A. The black curve is the geodesic curve between two points(left). After we update its 

Riemannian metric to one that induces a fattened surface, the geodesic curve is the green 

line between these two points(right). B. Quasiconformal mapping. C. Volumetric string 

constant.
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Fig. 2: 
Multimodal brain image fusion framewrok (MFRM). The left panel depicts surface feature 

mapping and the right panel depicts volumetric feature mapping. Multimodal imaging 

features are encoded in designed Riemannian metric. The framework produces feature 

mappings to a common space (a unit ball) where the vertex-wise correspondence is found 

through the geometric resampling.
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Fig. 3: 
Visualization of MFRM results and ROC curves for classification tasks ((5) for AD, (6) for 

SCZ). (1) is the raw volumetric data and (2) is the corresponding spherical volumetric 

harmonic map without feature encoding. (3) and (4) is the result of feature mapping (to a 

unit ball domain) of NC and AD, respectively. As we can see, compared to (3), (4) has the 

reduced anisotropy (more uniformly diffusive) which is consistent to the clinical discoveries 

[11].
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Fig. 4: 
Similarity matrix for Dataset 1 before (left) and after (right) feature fusion. The orange box 

marks the similarity between NC and AD, where is significantly brighter than the diagonal 

blocks (has the larger EMD values).
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Table 1:

Classification performance comparison on Dataset 1 (AD).

Methods
AD vs NC AD vs MCI MCI vs NC AD vs MCI vs NC

Acc F1 Acc F1 Ace F1 Acc F1

RawFA 51.35% 0.4375 58.97% 0.7419 52.27% 0.6866 38.33% 0.5542

PCA+jICA 68.92% 0.6102 61.54% 0.7059 53.28% 0.5714 35.0% 0.3276

mCCA+jICA 58.11% 0.5373 56.41% 0.6600 48.86% 0.5545 39.17% 0.4146

pFused 77.03% 0.7119 73.08% 0.6316 62.50% 0.6292 56.67% 0.5439

HPvol 78.40% 0.7241 60.30% 0.2791 64.80% 0.6353 51.70% 0.4660

MFRM 85.14% 0.8070 79.49% 0.7037 65.91% 0.6739 62.5% 0.5946
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Table 2:

Classification performance comparison on Dataset 2 (SCZ).

Methods
SCZ vs NC

Accuracy F1

RawFA 52% 0.4894

PCA+jICA 61% 0.6061

mCCA+jICA 62% 0.6346

pFused 70% 0.6591

MFRM 77% 0.7294
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