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Abstract

Resting-state functional connectivity states are often identified as clusters of dynamic connectivity 

patterns. However, existing clustering approaches do not distinguish major states from rarely 

occurring minor states and hence are sensitive to noise. To address this issue, we propose to model 

major states using a non-linear generative process guided by a Gaussian-mixture distribution in a 

low-dimensional latent space, while separately modeling the connectivity patterns of minor states 

by a non-informative uniform distribution. We embed this truncated Gaussian-Mixture model in a 

Variational Autoencoder framework to obtain a general joint clustering and outlier detection 

approach, tGM-VAE. When applied to synthetic data with known ground-truth, tGM-VAE is more 

accurate in clustering connectivity patterns than existing approaches. On the rs-fMRI of 593 

healthy adolescents, tGM-VAE identifies meaningful major connectivity states. The dwell time of 

these states significantly correlates with age.

1 Introduction

Functional connectivity refers to the functionally integrated relationship between spatially 

separated brain regions [1]. Recent work revealed that functional connectivity exhibits 

meaningful variations within the time series captured by resting-state fMRI [2,3]. As a 

consequence, a considerable amount of work has been directed to quantify dynamic 

functional connectivity. A popular way of quantification [2,4,5] is to first categorize the 

time-varying connectivity patterns of a subject or a population into several states. Then, the 

dwell time of each state and the transition probabilities across states are used to characterize 

functional dynamics and perform group analyses [4].

Most existing works identify major connectivity states (commonly observed states) by 

grouping the dynamic connectivity patterns into a few clusters [2,4,5]. However, some 

studies have indicated that there exist many minor states containing rare connectivity 

patterns that persist shortly (< 1% occupancy rate) [6]. These minor states often provide 

little merit to analysis because they may correspond to random individual brain variation, 

inaccurate connectivity pattern computed during state transitions or rs-fMRI noise. Instead 

of merging minor states into the major ones [4,5], recent work suggests to disentangle minor 

from major states by modeling an infinite number of clusters [6,7]. However, connectivity 

patterns in minor states may correspond to pure noise, so grouping them into clusters is not 

meaningful. In this paper, we address these concerns by developing a statistical framework 
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where the patterns associated with major states are drawn from an informative distribution 

while we use a non-informative distribution for minor states.

Motivated by the truncated stick-breaking representation of Dirichlet processes [8,9], our 

approach is guided by a Dirichlet prior when separating dynamic connectivity patterns into 

major and minor states. We define dynamic connectivity patterns by computing correlation 

matrices associated with sliding windows. We assume that the correlation matrices 

belonging to major states are generated by a non-linear process from a low-dimensional 

latent space, where the latent representations follow a Gaussian-mixture distribution. We 

assume that the rest of the correlation matrices, which correspond to minor states, are 

generated from a uniform distribution in the original space. To determine the optimal 

parameters of our model, we derive the variational lower-bound of its log marginal 

probability and find the maximum of that lower-bound by optimizing a variational 

autoencoder. As a result, our method, tGM-VAE, simultaneously achieves clustering and 

outlier-detection: tGM-VAE clusters dynamic connectivity patterns associated with major 

states and treats the minor states as outliers. In this work, we first demonstrate that tGM-

VAE achieves higher accuracy in defining major clusters and outliers compared to traditional 

Gaussian-mixture-based approaches when clustering synthetic data with ground-truth. We 

then report that, for 15k correlation matrices derived from rs-fMRI scans of 593 adolescents 

in the the National Consortium on Alcohol and Neurodevelopment in Adolescence 

(NCANDA), tGM-VAE identifies meaningful connectivity states and a significant effect of 

age on their mean dwell time.

In the following, we first review existing VAE-based clustering approaches in Section 2. We 

introduce in Section 3 the generative model of tGM-VAE, the variational lower bound of the 

resulting log marginal likelihood, and reformulate tGM-VAE into a joint clustering and 

outlier-detection approach. We present our synthetic experiments and clinical data analysis 

in Section 4.

2 Related Work

Traditional approaches to clustering connectivity patterns are mostly based on Gaussian-

mixture models [4,5]. These methods usually require fitting probability distributions in a 

high dimensional space, which is a challenging task. Moreover, it has been found that the 

underlying distributions of both fMRI measurements [6] and the derived correlation matrices 

[10] lie on a non-linear latent space. Therefore, modeling Gaussian-mixtures in the original 

space is suboptimal.

Generative models used in connection with neural-networks, such as VAEs, have recently 

attracted much attention for their capability of modeling latent representations of the data 

[11]. In VAE, the encoder approximates the intractable posterior distribution of the latent 

representation and the decoder aims to reconstruct the observation based on its latent 

representation. While traditional VAE assumes that latent variables follow a single Gaussian 

prior, recent works adopt mixture models in the latent space for semi-supervised learning 

[12] and clustering [13]. Dilokthanaku et al. [13] construct a two-level latent space that 

allows for a multi-modal prior of latent variables, but this model exhibits over-regularization 
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effects that require specific optimization procedures. Jiang et al. [14] explicitly define a 

generative process based on a mixture of Gaussians in the latent space, which achieves better 

clustering performance. Our tGM-VAE model is built upon a generative model similar to 

[14] to capture major states but also includes a non-informative distribution for modeling 

minor states.

Besides the above approaches for modeling fixed number of clusters, Bayesian non-

parametric models have been adopted to model an infinite number of clusters. The semi-

supervised approach proposed in [15] uses multiple VAEs as a proxy of Gaussian-mixture 

models and automatically determines the number of VAEs by maximizing the reconstruction 

capability for the entire dataset. The stick-breaking construction [9] has also been adopted in 

VAE for semi-supervised classification, where the latent representation is a set of truncated 

categorical weights. While this approach is not intrinsically built for clustering, the 

truncation strategy motivates us to use the last category (remainder of the truncation) to 

capture all dynamic connectivity patterns that do not belong to major clusters. Contrary to 

the above two approaches, tGM-VAE only models the encoding/decoding process for major 

clusters and omits the latent representation for the remainder. This strategy is useful when 

the remainder corresponds to (a) minor clusters of no interest to analysis so modeling their 

latent presentations is redundant; (b) outliers whose latent representations are meaningless or 

do not form clusters.

3 Methods

3.1 The Generative Model

Let X = {x1, …, xN} be a training dataset with N observations. Each xi represents a dynamic 

connectivity pattern, e.g., the upper triangular part of an ROI-to-ROI correlation matrix 

derived from the rs-fMRI time series at a given sliding window [2]. We assume that each xi 

belongs to a state, which, in our proposed generative process, is encoded by the categorical 

variable ci. The first K−1 categories represent the major states and ci = K corresponds to the 

remainder (minor states). ci is drawn from a categorical distribution pπ(ci) ∼ Cat(π), where 

π = [π1 ,…, πK] belongs to the (K − 1)-dimensional simplex and is generated from a 

Dirichlet prior with two parameters p(π) ∼ Dir(α, …, α, β). By construction, a single 

parameter α controls the portion of the K −1 major clusters indifferently, and β separately 

controls for the portion of the remainder via a stick-breaking procedure Beta((K − 1) · α, β) 

[8].

For simplicity, let cik denote ci = k. We assume that when cik with k < K, xi is generated from 

a latent representation zi through a non-linear process modeled by a neural-network f with 

parameter θ: pθ xi |zi ∼ N fθ zi , σx2 , where σx2 is the fixed standard deviation of noise. We 

further assume zi is drawn from a Gaussian distribution with mean µk and an identity 

covariance: pμ zi |cik ∼ N μk, I  with µ = {µk|k < K}. In other words, the marginal 

distribution of zi follows a Gaussian mixture in the latent space. On the other hand, when ci 

= K, we assume xi is simply drawn from a uniform distribution in a unit domain ξ embedded 

in the original space containing all observations after normalization: p xi |ciK ∼ U(ξ). Based 

on the above generative model parameters Θ = π, μ, θ , we have 
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pΘ xi, zi, cik = pθ xi |zi pμ zi |cik pπ cik  for k < K, and pΘ xi, ciK = pπ ciK . The Bayesian 

graphical diagram of this model is given in Fig. 1a.

3.2 Variational Lower Bound

Given the training dataset X and the two parameters {α, β} of the Dirichlet prior, the 

generative model parameters Θ are determined by maximizing the marginal probability 

p(X,π|μ,Θ,α,β). Assuming i.i.d for each xi, the log marginal probability can be written as:

log p(X, π |μ, θ, α, β) = ∑
i = 1

N
log pΘ xi + log p(π |α, β) (1)

In the above equation, the log likelihood logpΘ(xi) can not be directly optimized, so 

variational inference is used to maximize its lower-bound. Typically, lowerbounds for 

graphical models are derived by approximating an intractable posterior p(zi, ci|xi) on the 

latent variables with a tractable function q(zi, ci|xi). Here we make the common mean-field 

assumption: q(zi, ci|xi) = q(zi|xi)q(ci|xi). When omitting the subscripts i to simplify notations, 

it reads:

log pΘ(x) = log pΘ x, cK + ∑
k = 1

K − 1∫
z

pΘ x, z, ck (2)

= log pΘ x, cK q cK |x
q cK |x

+ ∑
k = 1

K − 1∫
z

pΘ x, z, ck q z, ck |x
q z, ck |x

(3)

= log q cK |x pπ cK

q cK |x
+ ∑

k = 1

K − 1
q ck |x Eq(z |x)

pΘ x, z, ck

q z, ck |x
(4)

≥ q cK |x log πK

q cK |x
+ ∑

k = 1

K − 1
q ck |x Eq(z |x) log pΘ x, z, ck

q z, ck |x
(5)

= ∑
k = 1

K
q ck |x log πk

q ck |x
+ ∑

k = 1

K − 1
q ck |x ℒk(x), where (6)

ℒk(x): = Eq(z |x) pθ(x |z) − DKL q(z |x) pμ z |ck (7)

where DKL denotes the KL divergence between two probability distributions.

Interpretation of the Lower Bound—ℒk corresponds to the formulation of the 

traditional single-Gaussian VAE [11] with respect to the kth cluster. Specifically, 

Eq(z |x) pθ(x |z)  encourages the decoded reconstruction of the latent variable to resemble the 
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observation. The DKL term is commonly interpreted as a regularizer encouraging the 

approximate posterior q(z|x) to resemble the cluster-specific Gaussian prior pµ(z|ck).

The right term of the lower-bound (Eq. 6) sums the losses of single-Gaussian VAEs over the 

K − 1 major clusters and weighs them by cluster-assignment probability q(c|x). Maximizing 

this term improves the encoding/decoding capability for patterns in major states while 

keeping their latent variables to form clusters. The left term of the lower-bound corresponds 

to the KL-divergence between q(c|x) and Cat(π) and encourages the posterior categorical 

distribution to approximate the categorical prior. It is important to note that latent 

representations are only modeled for the K − 1 clusters but not for the remainder. The 

portion of the remainder is controlled by the left term of the lower-bound.

3.3 Reformulation

In this section, we reformulate our model to demonstrate, by re-organizing the lower-bound 

of Eq. 6, that tGM-VAE can be interpreted as a joint outlier-detection and clustering 

framework. Given the generative process described in Section 3.1, the categorical variable c 
can be constructed by first differentiating the major clusters from the remainder. Let b 
denote a Bernoulli variable generated by p(b) ∼ Ber(γ), where γ ∈ [0,1] defines the portion 

of the remainder. When b0 (b = 0 for major clusters), a cluster assignment variable m is 

drawn from a categorical distribution pψ(m) ∼ Cat(ψ), where ψ = [ψ1, …, ψK−1] follows 

Dir(α,..., α). This construction also involves two parameters, {α,γ}. The graphical diagram 

of this model is given in Fig. 1b.

For posterior inference, different q functions are constructed for the reformulated generative 

process. Let q(b|x) denote the approximate posterior of assigning x to either major clusters 

or the remainder and let q(m|x, b0) denote the major cluster assignment given b0. Then q(c|x) 

and π in Section 3.2 become

q ck |x = q mk |x, b0 q b0 |x for k < K, and q cK |x = q b1 |x (8)

πk = ψk(1 − γ) for k < K, and πK = γ (9)

Replacing the terms in Eq. 6 with Eq. 8,9 leads to the following lower bound

log pΘ(x) ≥ q b0 |x G(x, m) − DKL(q(b |x) Ber(γ)), (10)

where G(x, m) = ∑k = 1
K − 1q mk |x, b0 ℒk(x) − DKL q m |x, b0 Cat(ψ)  is exactly the formulation 

of Gaussian-mixture VAE with K − 1 clusters [14]. From Eq. (10) we can see that q(b0|x) 

essentially gives the probability of x being an inlier. Data with high inlier-probability are 

then clustered by G(x, m), while the right term in Eq. (10) regularizes the portion of outliers 

with parameter γ. In practice, we use an additional weight λ to balance the two types of 

losses in Eq. (10), a common practice in VAE frameworks [13,16].
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3.4 Clustering Correlation Matrices

The design of our VAE network is based on the above inference procedure. More 

specifically, all the approximate posteriors are modeled by neural networks. Similar to the 

traditional VAE [11], q(z|x) is an encoder network (Fig. 1c red blocks) with parameters ϕz, 

which encodes the posterior as a multivariate Gaussian with an identity covariance 

q(z |x) = N(z; μ, I). While allowing for a diagonal or full covariance are both reasonable 

practices, we simply rely on the non-linear neural network to capture the covariance 

structure, and we only use the mean to capture the clustering effects in the latent space. The 

encoder has 3 densely connected hidden layers with tanh activation. The dimensions of the 3 

layers are (D, 16, 3), where D is the leading “power of two” that is smaller than the input 

dimension (e.g., D=64 for a 15×15 correlation matrix with 105 upper triangular elements). 

The decoder network fθ(z) has an inverse structure as the encoder and uses MSE 

reconstruction loss. For the optimization of these two networks, the SGVB estimator and 

reparameterization trick are adopted [11].

Contrary to previous work [14,17], we also use neural networks to model the categorical 

posteriors q(b|x) and q(m|x) (Fig. 1c orange blocks). Their first two layers were shared from 

the encoder of q(z|x) and the last layer is densely connected with soft-max activation. This 

construction rigorously reflects the structure of the generative model described in Section 

3.3 (Fig. 1b) and allows for two separate mechanisms for detecting outliers with q(b|x) and 

assigning clusters with q(m|x). By comparison, a single neural network for q(c|x) would be 

obtained from the model described in Section 3.1 (Fig. 1a), but this network would treat the 

clusters and outliers indifferently.

4 Results

tGM-VAE was first validated and compared to traditional clustering approaches based on 

synthetic experiments, where rs-fMRI series and time-varying correlation matrices were 

simulated according to a ground-truth state sequence. We measured, in particular, the 

accuracy of tGM-VAE in connectivity states estimation. Then, tGM-VAE was used to cluster 

15k correlation matrices obtained from the rs-fMRI scans of 593 adolescents in the 

NCANDA study [18]. The relation between the age of a subject and the mean dwell time of 

the connectivity states was finally examined.

4.1 Synthetic Experiments

Data Simulation—We followed the simulation procedure presented in [2,6] by first 

generating a state sequence of 50000 time points associated with 10 connectivity states, 

among which 5 states were major states. The transition probability from the ith state to the jth 

state was set to 0.9δij + 0.1bi
j, where δ is the Kronecker Delta function, and bi = bi

1, …, bi
10

was randomly generated from Dir(10,..., 10, 1,..., 1). This process led to self-transition 

probabilities varying between 0.9 and 0.95, and cross-state transition probabilities between 

1e-4 and 0.05. The mean dwell time of a state (average time that a state continuously persists 

before switching to another state) varied between 8 and 15 time points. The occupancy rate 

of a major state (percentage of a state occupying the sequence) varied between 8% to 30%, 
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and the total occupancy of the 5 minor states varied between 5% to 10%. These metrics are 

similar for real rs-fMRI data reported in [6].

Next, a connectivity pattern was simulated for each state. In the first experiment, we 

assumed that there were 15 regions of interest (ROI) in the brain, so each state was 

associated with a 15×15 matrix, known as the community matrix [6]. For the ith state, a 1D 

loading vector ui ∈ ℝ15 consisted of {1,−1,0} (representing positive/negative or no activation 

of each ROI) was randomly generated. Then, the ith community matrix was computed by 

uiuiT [2].

Afterwards, synthetic rs-fMRI signals at each time point were randomly sampled from a 

Gaussian distribution with the covariance being the state-specific community matrix at that 

time point. Gaussian noise of standard deviation 0.1 was further added to the synthetic rs-

fMRI series. Finally, dynamic correlation matrices were generated using a sliding window of 

length 11. These different steps are summarized in Fig. 2.

Clustering Accuracy—tGM-VAE clustered the dynamic correlation matrices into 5 

major states with the following parameter settings: γ = 0.075, β = 1.1, and λ = 200. These 

settings corresponded to an accurate estimate of the portion of the remainder (γ), a rather 

non-informative Dirichlet prior (β) and a strong regularization on the portion of the 

remainder (λ). Fig. 3 presents the 3D latent space associated with tGM-VAE. Only the 5 

major states are displayed as the latent representations of the remainder were not modeled. 

We can observe that the latent representations were reasonably clustered by states, thanks to 

the Gaussian-mixture modeling in the latent space [9,13,14].

To associate the 5 estimated clusters with the 5 ground-truth major states, the correlation 

matrices in an estimated cluster were first averaged and linked to the closest community 

matrix with respect to the Frobenius norm. As there was no interest in differentiating minor 

connectivity states, the clustering accuracy was measured with respect to the 6 classes (5 

clusters + remainder). tGM-VAE was compared with three other clustering approaches as 

indicated by Fig. 4. Both Gaussian-Mixture Model (GMM) and Gaussian-Mixture VAE 

(GM-VAE) clustered the entire dataset into 5 clusters (merging minor states into major 

ones); The non-parametric Dirichlet Process (DP) Gaussian-mixture approach modeled an 

infinite number of clusters, so the 5 largest clusters estimated by DP were considered major 

states and the rest was considered the remainder. The clustering accuracy of these 

approaches was 68.4% (GMM), 69.0% (DP), 74.8% (GM-VAE) and 78.5 % (tGM-VAE). 

Fig. 3b shows the estimated state sequence produced by tGM-VAE (most accurate) and 

GMM (least accurate). We observe that the two VAE-based methods produced significantly 

improved clustering accuracy than the two traditional Gaussian-Mixture methods (GMM 

and DP). This improvement indicates that the modeling of latent representations and the 

associated non-linear generative processes as provided by the VAE framework were helpful 

in analyzing correlation matrices. Moreover, the truncation of tGM-VAE could accurately 

capture the minor states and provided 3.7% improvement over GM-VAE, whereas explicitly 

clustering minor states was a less effective strategy (DP only 0.6% improvement over 

GMM).
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Next, the above comparison was repeated for different simulation settings (Fig. 4). To 

demonstrate that tGM-VAE can generalize to brain parcellations of different scales, the 

number of ROIs was varied between 10 and 50, which covered the typical range used in 

existing analyses of functional dynamics [2,4,6,7]. In all settings the two VAE-based 

approaches produced more accurate clustering, and tGM-VAE was the most accurate 

approach. This was also the case when the standard deviation of noise in synthetic rs-fMRI 

time series was varied between 0.05 to 1. Another important parameter (not relevant to 

clustering approaches) in the analysis of functional dynamics is the length of the sliding 

window for computing correlation matrices. Previous works often use a window size longer 

than the mean dwell time of connectivity states in order to reliably compute correlation 

values, but this strategy could potentially fail to differentiate dynamic connectivity patterns 

across neighboring states because the long window often covers multiple state transitions. 

While the analysis of window length is not the focus of the presented work, our 

experimental results (Fig. 4c) indicate that choosing a window size longer than the mean 

dwell time does not guarantee accurate clustering.

Note that the shallow neural networks tested here are a simplification choice and not a 

limitation of the method. Further exploration in the network structure would lead to better 

results for tGM-VAE. For instance, setting the dimension of latent space larger than 3 would 

produce higher accuracy for large correlation matrices (Fig. 4d).

4.2 The NCANDA Dataset—We applied tGM-VAE to the rs-fMRI data of 593 normal 

adolescents (age 12–21; 284 boys and 309 girls) from the NCANDA study [18] to 

investigate dynamic connectivity states in young brains. The rs-fMRI time series was 

preprocessed using the publicly available pipeline as described in the NCANDA study [18]. 

For each subject, functional time series were extracted from 45 cerebral regions (averaged 

bilaterally) as defined by the sri24 atlas [19]. Dynamic correlation matrices of size 45 × 45 

were then derived for each subject based on a sliding-window approach [2] and improved by 

a linear shrinkage operation [20]. As mentioned, there is no consensus on the optimal length 

of the sliding-window. In the present work, we selected the length that produced the largest 

number of strong correlations (absolute value ≥ 0.5) to maximize the information contained 

in the training data. Our experiments suggest that the optimum was achieved at 10 time 

points (22s) regardless of the parcellation used to produce correlation matrices (Fig. 6). 

Afterwards, a total of 153587 matrices were derived for the entire cohort and clustered by 

tGM-VAE into 5 major states [4]. The dimension of the latent space was set to 6. Other 

parameters were set as in the synthetic experiments. Fig. 5 shows the mean correlation 

matrices associated with the 5 major states detected by tGM-VAE and visualizes their graph 

structures. These 5 states correspond to well-known functional networks: auditory network 

(State 1), limbic and thalamostriatal network (State 2), visual network (State 3), salience 

network (State 4) and the default mode network (State 5).

Based on the clustering results, the state sequence was recovered for each subject and the 

mean dwell time over all states was computed. A group analysis was then performed to 

investigate the aging effect on the mean dwell time. First, sex and scanner-type were 

removed as confounding factors from mean dwell time using regression analysis [18,21]. 

The residuals were then correlated with age, resulting in a significant positive correlation 
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(one-tailed p=.0006, Fig 6). This age-related increase of mean dwell time could also be 

observed when the analysis was repeated with the dimension of latent space varying between 

3 to 7. These results essentially indicate each connectivity state tends to persist longer in 

older adolescents, which converges with current concept of neurodevelopment that variation 

of dynamic functional connectivity declines with age [22].

5 Conclusion

In this paper, we have presented a novel joint clustering and outlier-detection approach to 

identify functional connectivity states. Our model, tGM-VAE, introduces for the first time a 

truncated Gaussian-mixture model in the variational autoencoder framework. This approach 

allows us to cluster data corrupted by noise, outliers and minor clusters of no interest to 

analysis. We used tGM-VAE to extract major functional connectivity states from resting-

state fMRI scans and characterize their dynamics. We showed that modeling latent 

representations of correlation matrices improves clustering accuracy compared to traditional 

Gaussian-mixture approaches and that our truncation strategy is useful in disentangling 

minor and major connectivity states. In the future, we will expand our framework to improve 

the modeling of state transitions.
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Fig.1. 
(a) Bayesian model associated with tGM-VAE. Solid lines denote the generative model and 

dashed lines the inference model. Gray nodes denote observed variables and given 

parameters. (b) Reformulated model. (c) Neural network implemented from (b).
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Fig.2. 
Pipeline for simulating synthetic data.
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Fig.3. 
(a) Latent representations of correlation matrices computed by tGM-VAE color-coded by 

ground-truth states (left) and estimated states (right). (b) State sequences estimated by tGM-

VAE and GMM overlaid with the ground-truth sequence.
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Fig.4. 
Clustering accuracy scores measured on synthetic data by varying (a) noise level; (b) size of 

correlation matrix; (c) sliding window length. (d) tGM-VAE accuracy as a function of latent 

space dimension.
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Fig.5. 
Functional connectivity patterns of 5 major states derived from the NCANDA rs-fMRI data. 

Top: mean correlation matrices; Bottom: Graph visualization of the mean correlation 

matrices. Node color corresponds to lobe names. Node size corresponds to sum of positive 

correlations associated with that node. White edges correspond to correlations ≥ 0.25 and 

black edges ≤ −0.25. Edge thickness corresponds to absolute value of correlation.
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Fig.6. 
Left: The number of strong correlations (absolute value≥0.5) depends on sliding window 

length but not on the number of ROIs in a parcellation. Right: For the NCANDA cohort, 

aging effect in the mean dwell time corrected for sex and scanner.

Zhao et al. Page 16

Inf Process Med Imaging. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Related Work
	Methods
	The Generative Model
	Variational Lower Bound
	Interpretation of the Lower Bound

	Reformulation
	Clustering Correlation Matrices

	Results
	Synthetic Experiments
	Data Simulation
	Clustering Accuracy
	The NCANDA Dataset


	Conclusion
	References
	Fig.1.
	Fig.2.
	Fig.3.
	Fig.4.
	Fig.5.
	Fig.6.

