Skip to main content

Adaptive Graph Convolution Pooling for Brain Surface Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Abstract

Learning surface data is fundamental to neuroscience. Recent advances has enabled the use of graph convolution filters directly within neural network frameworks. These filters are, however, constrained to a single fixed-graph structure. A pooling strategy remains yet to be defined for learning graph-node data in non-predefined graph structures. This lack of flexibility in graph convolutional architectures currently limits applications on brain surfaces. Graph structures and number of mesh nodes, indeed, highly vary across brain geometries. This paper proposes a new general graph-based pooling method for processing full-sized surface-valued data, as input layers of graph neural networks, towards predicting subject-based variables, as output information. This novel method learns an intrinsic aggregation of input graph nodes based on the geometry of the input graph. This is leveraged using recent advances in spectral graph alignment where the surface parameterization becomes common across multiple brain geometries. These novel adaptive intrinsic pooling layers enable the exploration of entirely new architectures of graph neural networks, which were previously constrained to one single fixed structure in a dataset. We demonstrate the flexibility of the new pooling strategy in two proof-of-concept applications, namely, the classification of disease stages and regression of subject’s ages using directly the surface data from varying mesh geometries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145, 137–165 (2017)

    Article  Google Scholar 

  2. Hua, X., et al.: Unbiased tensor-based morphometry: improved robustness and sample size estimates for Alzheimer’s disease clinical trials. NeuroImage 66, 648–661 (2013)

    Article  Google Scholar 

  3. Fischl, B., et al.: Automatically parcellating the cortex. Cereb. Cortex 14, 11–22 (2004)

    Article  Google Scholar 

  4. Yeo, B.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic surface registration. TMI 29, 650–668 (2010)

    Google Scholar 

  5. Styner, M., et al.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. (2006)

    Google Scholar 

  6. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. ISP 86, 2278–2324 (1998)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. MedIA 36, 61–78 (2017)

    Google Scholar 

  9. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: ICLR (2014)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-Supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  11. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS (2016)

    Google Scholar 

  12. Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using CNNs. In: CVPR (2017)

    Google Scholar 

  13. Xu, Y., Fan, T., Xu, M., Zeng, L., Qia, Y.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: ECCV (2018)

    Google Scholar 

  14. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: CayleyNets: graph convolutional neural networks with complex rational spectral filters. In: ICLR (2018)

    Google Scholar 

  15. Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with continuous B-Spline kernels. In: CVPR (2018)

    Google Scholar 

  16. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. In: SIGGRAPH (2012)

    Google Scholar 

  17. Yi, L., Su, H., Guo, X., Guibas, L.J.: SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation. In: CVPR (2017)

    Google Scholar 

  18. Lombaert, H., Arcaro, M., Ayache, N.: Brain transfer: spectral analysis of cortical surfaces and functional maps. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 474–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_37

    Chapter  Google Scholar 

  19. Gopinath, K., Desrosiers, C., Lombaert, H.: Graph convolutions on spectral embeddings: learning of cortical surface data. In: arXiv preprint arXiv:1803.10336 (2018)

  20. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a multilevel approach. PAMI 29, 1944–1957 (2007)

    Article  Google Scholar 

  21. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  22. Ying, R., et al.: Hierarchical graph representation learning with differentiable pooling. arXiv arXiv:1806.08804 (2018)

  23. Bron, E., et al.: The CADDementia challenge. Neuroimage (2015)

    Google Scholar 

  24. Lombaert, H., Criminisi, A., Ayache, N.: Spectral forests: learning of surface data, application to cortical parcellation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 547–555. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_67

    Chapter  Google Scholar 

  25. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: ECCV (2018)

    Google Scholar 

  26. Destrieux, C., et al.: A sulcal depth parcellation of the cortex. NeuroImage (2009)

    Google Scholar 

  27. Sowell, E.R., et al.: Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–8231 (2004)

    Article  Google Scholar 

  28. Lerch, J.P., et al.: Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb. Cortex 15, 995–1001 (2004)

    Article  Google Scholar 

  29. Jack, C.R., et al.: ADNI: MRI methods. JMRI 27, 685–691 (2008)

    Article  Google Scholar 

  30. Ledig, C., et al.: Alzheimer’s state classification using volumetry, thickness and intensity. In: MICCAI (2014)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Research Council of Canada (NSERC), NVIDIA Corp. with the donation of a Titan Xp GPU. Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Gopinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gopinath, K., Desrosiers, C., Lombaert, H. (2019). Adaptive Graph Convolution Pooling for Brain Surface Analysis. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics