Skip to main content

Human-Robot Cooperation in Manual Assembly – Interaction Concepts for the Future Workplace

  • Conference paper
  • First Online:
Book cover Advances in Human Factors in Robots and Unmanned Systems (AHFE 2019)

Abstract

A human-robot cooperation workstation was developed and implemented as a platform for the examination of ergonomic design approaches and human-robot interaction in manual assembly. Various control modalities are being tested for this workstation, which enable a broad range of applications for human-robot interaction and control. These modalities include computer-generated control commands, gesture-based control using Myo Armbands, force-sensitive control by guiding the robot, motion tracking of the operator, and head-based gesture control using an Inertial Measurement Unit (IMU). The focus is on human-centered and ergonomic development of interaction patterns for these control modalities. This paper presents the multimodal interaction concept with the robot and allocates the presented modalities to suitable application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masinga, P., Campbell, H., Trimble, J.A.: A framework for human collaborative robots, operations in South African automotive industry. In: IEEM 2015: 2015 IEEE International Conference on Industrial Engineering and Engineering Management: 6–9, December 2015, pp. 1494–1497. Singapore. IEEE, Piscataway, NJ (2015)

    Google Scholar 

  2. Audi AG.: Human robot cooperation: KLARA facilitates greater diversity of versions in production at Audi, Ingolstadt (2017)

    Google Scholar 

  3. DIN.: EN ISO 10218-2: Robots and robotic devices - safety requirements for industrial robots - Part 2: Robot systems and integration (2012)

    Google Scholar 

  4. DIN.: EN ISO 10218-1: Robots and robotic devices - safety requirements for industrial robots - Part 1: Robots (2012)

    Google Scholar 

  5. DIN.: ISO/TS 15066 Robots and robotic devices - collaborative robots (2017)

    Google Scholar 

  6. Gong, Z., Zhang, Y.: Robot signaling its intentions in human-robot teaming. In: HRI Workshop on Explainable Robotic Systems (2018)

    Google Scholar 

  7. Schmidt, L., Herrmann, R., Hegenberg, J., et al.: Evaluation einer 3-D-Gestensteuerung für einen mobilen Serviceroboter. Zeitschrift für Arbeitswissenschaft 68(3), 129–134 (2014). https://doi.org/10.1007/BF03374438

    Article  Google Scholar 

  8. Morais, G.D., Neves, L.C., Masiero, A.A., et al.: Application of Myo armband system to control a robot interface. In: Bahr, A., Abu Saleh, L., Schröder, D., et al. (eds.) Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies CMOS Technology, pp. 227–231. Technische Universität Hamburg Universitätsbibliothek; SCITEPRESS - Science and Technology Publications Lda, Hamburg, Setúbal (2016)

    Google Scholar 

  9. Sathiyanarayanan, M., Mulling, T., Nazir, B.: Controlling a robot using a wearable device (MYO). In: Int. J. Eng. Dev. Res. (2015)

    Google Scholar 

  10. Sanna, A., Lamberti, F., Paravati, G., et al.: A Kinect-based natural interface for quadrotor control. Entertainment Comput. 4(3), 179–186 (2013). https://doi.org/10.1016/j.entcom.2013.01.001

    Article  Google Scholar 

  11. Stowers, J., Hayes, M., Bainbridge-Smith, A.: Altitude control of a quadrotor helicopter using depth map from Microsoft Kinect sensor. In: Gokasan, M. (ed.) IEEE International Conference on Mechatronics (ICM), 2011: 13–15, April 2011, Istanbul, Turkey; proceedings, pp. 358–362. IEEE, Piscataway, NJ (2011)

    Chapter  Google Scholar 

  12. Biao, M., Wensheng, X., Songlin, W.: A robot control system based on gesture recognition using Kinect. Indonesian J. Electr. Eng. Comput. Sci. 11(5) (2013). https://doi.org/10.11591/telkomnika.v11i5.2493

  13. Cheng, L., Sun, Q., Su, H., et al.: Design and implementation of human-robot interactive demonstration system based on Kinect. In: 24th Chinese Control and Decision Conference (CCDC), 2012: 23–25, May 2012, pp. 971–975. Taiyuan, China. IEEE, Piscataway, NJ (2012)

    Google Scholar 

  14. Du, G., Zhang, P., Mai, J., et al.: Markerless Kinect-based hand tracking for robot teleoperation. Int. J. Adv. Rob. Syst. 9(2), 36 (2012). https://doi.org/10.5772/50093

    Article  Google Scholar 

  15. Song, W., Guo, X., Jiang, F., et al.: Teleoperation humanoid robot control system based on Kinect sensor. In: 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2012: 26–27, Aug. 2012, pp. 264–267. Nanchang, Jiangxi, China. IEEE, Piscataway, NJ (2012)

    Google Scholar 

  16. Li, C., Yang, C., Wan, J., et al.: Teleoperation control of Baxter robot using Kalman filter-based sensor fusion. Syst. Sci. Control Eng. 5(1), 156–167 (2017). https://doi.org/10.1080/21642583.2017.1300109

    Article  Google Scholar 

  17. Rudigkeit, N., Gebhard, M., Gräser, A.: Towards a user-friendly AHRS-based human-machine interface for a semi-autonomous robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Assistive Robotics for Individuals with Disabilities: HRI Issues and Beyond (2014)

    Google Scholar 

  18. Jackowski, A., Gebhard, M., Graser, A.: A novel head gesture based interface for hands-free control of a robot. In: 2016 IEEE International Symposium on Medical Measurements and Applications, pp. 1–6. IEEE, Piscataway, NJ (2016)

    Google Scholar 

  19. Nelles, J., Kohns, S., Spies, J., et al.: Analysis of stress and strain in head based control of cooperative robots through tetraplegics. World Acad. Sci. Eng. Technol. Int. J. Med. Health, Biomed. Bioeng. Pharm. Eng. 11(1), 11–22

    Google Scholar 

  20. Nelles, J., Schmitz-Buhl, F., Spies, J., et al.: Altersdifferenzierte Evaluierung von Belastung und Beanspruchung bei der kopfbasierten Steuerung eines kooperierenden Roboters. In: Frühjahrskongress der Gesellschaft für Arbeitswissenschaft (2017)

    Google Scholar 

  21. Caccavale, R., Saveriano, M., Finzi, A., et al.: Kinesthetic teaching and attentional supervision of structured tasks in human–robot interaction. Auton. Robots 57(5), 469 (2018). https://doi.org/10.1007/s10514-018-9706-9

    Article  Google Scholar 

  22. Ruffaldi, E., Di Fava, A., Loconsole, C., et al.: Vibrotactile feedback for aiding robot kinesthetic teaching of manipulation tasks. In: Human-robot collaboration and human assistance for an improved quality of life: IEEE RO-MAN 2017: 26th IEEE International Symposium on Robot and Human Interactive Communication, August 28-September 1, 2017, pp. 818–823. Lisbon, Portugal. IEEE, Piscataway, NJ (2017)

    Google Scholar 

  23. Kormushev, P., Calinon, S., Caldwell, D.G.: Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Adv. Robot. 25(5), 581–603 (2011). https://doi.org/10.1163/016918611X558261

    Article  Google Scholar 

  24. Gammieri, L., Schumann, M., Pelliccia, L., et al.: Coupling of a redundant manipulator with a virtual reality environment to enhance human-robot cooperation. Procedia CIRP 62, 618–623 (2017). https://doi.org/10.1016/j.procir.2016.06.056

    Article  Google Scholar 

  25. Lasota, P.A., Rossano, G.F., Shah, J.A.: Toward safe close-proximity human-robot interaction with standard industrial robots. In: IEEE International Conference on Automation Science and Engineering (CASE), 2014: 18–22, Aug. 2014, pp. 339–344. Taipei, Taiwan. IEEE, Piscataway, NJ (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Founda-tion DFG for the kind support within the Cluster of Excellence “Internet of Production (ID 390621612)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Petruck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petruck, H. et al. (2020). Human-Robot Cooperation in Manual Assembly – Interaction Concepts for the Future Workplace. In: Chen, J. (eds) Advances in Human Factors in Robots and Unmanned Systems. AHFE 2019. Advances in Intelligent Systems and Computing, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-20467-9_6

Download citation

Publish with us

Policies and ethics