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Abstract. River Formation Dynamics (RFD) is a metaheuristic that
has been successfully used by different research groups to deal with a
wide variety of discrete combinatorial optimization problems. However,
no attempt has been done to adapt it to continuous optimization do-
mains. In this paper we propose a first approach to obtain such objective,
and we evaluate its usefulness by comparing RFD results against those
obtained by other more mature metaheuristics for continuous domains.
In particular, we compare with the results obtained by Particle Swarm
Optimization, Artificial Bee Colony, Firefly Algorithm, and Social Spider
Optimization.
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1 Introduction

Swarm intelligence methods [9] are heuristic problem-solving methods where a
set of simple entities interact with each other according to their local information.
The goal of these interactions is to collaboratively obtain a good solution to a
given problem. Many swarm intelligence metaheuristics have been proposed in
the literature, both for discrete combinatorial optimization problems (see e.g.
ACO: Ant Colony Optimization [8,7] or RFD: River Formation Dynamics [19,
21]) and for continuous domain optimization problems (see e.g. PSO: Particle
Swarm Optimization [14] or ABC: Artificial Bee Colony [13])

Briefly, River Formation Dynamics (RFD) is a water-based metaheuristic [27]
that consists on copying the geological forces that form rivers. When rivers fall
through steep slopes, they erode some soil from the ground and transport it
within the water. Later, this sediment is deposited in flatter areas of the river,
where the water moves more slowly. In this way, the altitude of points traversed
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by the river iteratively changes, and the whole path tends to form a ever decreas-
ing slope. The river and tributaries courses change along time, and eventually
the formed river (together with its tributaries) represents an efficient way to
gather all the rain water in some geographical area and send it to the sea. In
fact, the final form of the river constitutes an efficient tradeoff between finding
short paths from all raining points towards the sea (i.e. finding shortest paths)
and forming a small tree of river and tributaries (i.e. finding a small spanning
tree): the first goal improves if more tributaries are used, whereas the latter goal
encourages collecting water by using meanders instead.

RFD fits particularly well in NP-hard problems consisting in creating a kind
of tree, as the two tendencies commented before (i.e. finding short paths or small
spanning trees) can easily be leant towards either way by means of parameters
(see [22]). RFD has been applied to deal with several classical NP-hard optimiza-
tion problems (see e.g. [20,21,23]) and has also been applied to solve industrial
problems such as network routing [2, 10], robot navigation [25], VLSI design [6],
or optimization in electrical power systems [1]. The interested reader is referred
to [24] for a detailed survey covering the main applications of RFD. It is worth
noting that, roughly speaking, RFD can be thought as a derivative-oriented ver-
sion of ACO: In ACO, entities (ants) tend to move to those nodes where some
value (pheromone trail) is higher, whereas in RFD, drops tend to move next to
those nodes where the difference between the values (altitudes) at the origin and
the destination nodes is higher (the flow is larger in steeper slopes).

It is worth pointing out that, so far, RFD has been applied only to problems
where the solution space is discrete. In this paper we face the problem of devel-
oping a continuous version of RFD. Note that adapting a swarm method to the
continuous domain may be relatively straightforward if the entities are the solu-
tions themselves, because most of times the operators defining how each entity
affects other entities can be easily generalized from the discrete to the continu-
ous domain. However, it might not be so straightforward if solutions are defined
by a structure drawn by the entities over some environment (e.g. ACO or our
target method here, RFD), particularly if this structure consists of sequences of
steps between consecutive neighbor solutions (points): If a continuous domain is
adopted, then these paths contain an infinite amount of points, so an alternative
representation would be required to denote them. More importantly, the typical
expected outputs of a continuous problem are not naturally represented as a
structure over an environment (e.g. a sequence of steps, a path, a round trip, or
a tree over a graph). On the contrary, they are typically (and naturally) viewed
as a point in a continuous-dimensional space.

Thus, in order to create a continuous version of RFD, it is a sensible choice
abandoning our previous RFD view, where the output of the algorithm is a
given structure (e.g. path, tree, etc.), and adopting the more natural view that
the output is a point in the continuous space. Then, each drop represents a pos-
sible solution that moves around the search space. However, rather than guiding
the movement of entities in terms of the fitness at each possible destination (as
in PSO), each drop will consider the slopes towards other known positions (other



drops). The higher the slope, the higher the probability of moving in such direc-
tion. Thus, we consider a gradient-oriented version of continuous optimization
metaheuristics.

The rest of the paper is structured as follows. In the next section we present
our proposal to adapt RFD to continuous domains. Then, in Section 3 we an-
alyze the usefulness of the approach by comparing its results against those of
other metaheuristics. Finally, our conclusions and future work plans are shown
in Section 4.

2 Continuous RFD

In the continuous version of RFD we had to decide what the drops would rep-
resent, and how they would move through the solution space. The most natural
approach is to consider each drop as a solution to the problem, that is, a position
in the search space. The evaluation of the position of a drop will be the height
at which it is (the value of the solution). To move the drops we use the slopes
between them as in the discrete version of the algorithm. In this way, the drops
will move with higher probability approaching those drops that are at a lower
height (following the slopes of maximum gradient) and, therefore, closer to the
optimum.

Next, we describe in detail the RFD scheme for solving minimization contin-
uous problems.

In Figure 1, the main steps of the presented algorithm can be seen.

initializeVariables ()
initializeDrops ()
while (not endingCondition())
for each drop d
if numEvals > O then
if noImprove(d) then
createDrop(d, computeRangeLimit ())
elseif not isBestDrop(d) then
moveDrop (d)
else
moveBestDrop (d)
end if
end if
end for
computeRangeFactor ()
end while

Fig. 1. Continuous RFD scheme



2.1 Initialization
In the initializeVariables() phase the following variables are initialized:

— numDrops represents the number of drops (entities) used.

— numEvals represents the maximum number of function evaluations allowed.

— numStepsNoImprove: for each drop it indicates the number of steps it can
be moved without improving its previous solution. When the drop is moved
numStepsNoImprove steps without improving, it is created again.

— accuracy indicates the precision, i.e. the number of decimal numbers, of the
solution.

— moveLimit represents the percentage that limits the movement of a drop (it
is used in the moveDrop(d) phase).

— rangeFactor variable allows us to focus (or unfocus) the search in a more
concrete (or general) area. It will be explained later in the context of the
computeRangeFactor () method.

— time represents the maximum time of execution measured in seconds.

After that, in initializeDrops() each drop is randomly created in the
search space. For each dimension i, a random value between the minimum -
min(i)- and maximum value -maz(i)- of dimension ¢ is generated defining the
drop position positiong. In this process the best drop is stored. The best drop
will be the drop with the best solution found so far, that is, the drop whose
value is the minimum supposing we are minimizing a function f, where this
value is the evaluation of function f in the drop position positiong, that is,
value = f(positiong).

2.2 Main Loop of the Algorithm

After the initialization has taken place, the body of the loop is executed until
the endingCondition() is satisfied. The execution of the loop finishes when the
required accuracy is achieved, when the maximum number of evaluations of the
function is reached, or when the time has expired.

In the main loop, three different strategies are used to move each drop if
numEvals>O0:

— If the drop has not improved in the last numStepsNoImprove steps (that
is, noImprove(d)), then the drop is randomly created in the search space
(createDrop(d, computeRangeLimit ())) depending on the rangeFactor vari-
able. This variable narrows the dimensions where the drop can be created.
Each dimension ¢ is reduced in the computeRangeLimit() function as fol-
lows:

range(i) = (max (i) — min(i)) * rangeFactor

These ranges will limit where the drop can be created. To create the new
position of the drop, first we choose a drop (c¢d) in a random manner depend-
ing on its values. Those drops with lower values will be selected with higher



probability. Second, and having into account the position of the chosen drop
(position.q) and the dimension limit range, we compute the position of the
drop d. For each dimension i we randomly choose a value for positiong(i) in
range

[position.q(i) — (range(i)/2), position.q(i) + (range(i)/2)]

without exceeding the limits of the dimensions.

If the drop is not the best drop at this moment (not isBestDrop(d)) then
it is moved (moveDrop(d)) depending on the slopes between the drop d and
the rest of the drops. First, these slopes are computed as follows:

slope(d, ad) = (positiong — positiong.q)/distance(d, ad)

where ad is another drop and distance(d, ad) is the Euclidean distance be-
tween both drops. There exist two exceptional cases to deal with cases with
non-decreasing slopes: (a) When slope(d, ad) = 0 we assign an epsilon slope:
slope(d,ad) = €; (b) When slope(d, ad) < 0 we assign

slope(d,ad) = 0.1/(Abs(slope) + 1)

in order to allow drops climbing ascendent slopes (with a very low prob-
ability). Second, one drop is chosen as destination (dd) in a random way
depending on the slopes: The higher the slope, the higher the probability
of choosing that drop as destination. slopeyq will represent the slope be-
tween drop d and dd. Third, once the destination is selected, we compute
the direction in which the drop will be moved. For each dimension ¢,

direction(i) = positiongq(i) — positiong (i)

Fourth, the new position of d is calculated. In particular, for each dimension
i we have:
newPositiong(i) = positiong(i) + step(i)

where step(i) = direction(i) x slopeqq. However, there is a limit given by the
expression

limit(i) = (max(i) — min(i)) * (moveLimit/100)

If |step(i)| > limit(i) then step(i) = limit(i) if step(i) >= 0, and step(i) =
—limit(i) in other case. Of course, the movement cannot exceed the limit
values min(i) and max(i). Fifth, once the new position is known, the new
value is computed: newValue = f(positiong). Sixth and finally, if the new
position improves the previous one, the drop is moved to the new position:
positiong = newPositiong. In other case, the drop remains in its previous
position.

In moveBestDrop(d) phase, the best drop is moved using the golden spi-
ral. In this case, we forget about the river analogy, and we take inspiration



from [18] to analyze the surroundings of the current position. By using the
golden spiral we analyze with more probability nearby points, but trying
to find a good tradeoff with positions located farther. More precisely, we
modify two randomly chosen dimensions i and j = (i + 1) mod dimensions
according to the following expression:

If exp mod 4 = 0 or exp mod 4 = 1 then:

newPositiong(i) = positiong(i) + addend

Else:
newPositiong(i) = positiong(i) — addend

If exp mod 4 = 0 or exp mod 4 = 3 then:

newPositiong(j) = positiong(j) + addend

Else:
newPositiony(j) = positiong(j) — addend

where addend = 1/¢°"P, ¢ = (1 + 4/5)/2 is the golden ratio, and exp takes
values from 1 to accuracy * 10 (increasing it one by one) for each pair of
dimensions 7 and j. The rest of dimensions remain unchanged. Again, the
drop is moved only if the new position improves the previous position.

In the last step of the loop, the computeRangeFactor () method modifies
the variable range_factor. If the solution has not been improved in the last
numFEvalsOneLoop evaluations of function f, then:

rangeFactor = rangeFactor * 2

that is, the range where a drop can be created is duplicated. In other case, the
range is halved:

rangeFactor = rangeFactor/2

numFEvalsOneLoop = numDrops+accuracy*10 is the number of evaluations of
function f in one loop of the algorithm, because we have numDrops evaluations
for every movement or creation of a drop, and accuracy x 10 evaluations when
moving the best drop. Let us remark that the values of range_factor are limited
to 1073CCUraCY a5 minimum, and 1 as maximum.

After creating (createDrop(d,computeRangeLimit())) or moving a drop
(moveDrop (d) or moveBestDrop(d)) we compare if the best solution has been
improved, and if it is the case then the new best solution is stored.



HProblem‘ PSO ABC FF SSO RFD H
fi -15 -15 -14.99 -15 -15

f2 -0.79 -0.79 -0.785 -0.802 -0.716
f3 ]-30662.821|-30664.923|-30662.032|-30665.538|-30665.538
fa -6958.369 | -6958.022 | -6950.114 | -6961.008 | -6961.814
fs 24.475 26.58 28.54 24.306 24.704
fe -0.749 -0.75 -0.749 -0.75 -0.75

fr 0.05416 | 0.05398 | 0.05417 | 0.05394 | 0.08615

fs 963.925 | 962.642 | 965.428 | 961.999 | 961.719

Table 1. Results for a benchmark of constrained optimization problems

3 Experiments

In order to assess the usefulness of our approach, we have conducted a set of
experiments to compare the performance of RFD against that obtained by other
more mature metaheuristics. In particular, we consider two types of case stud-
ies. First, we consider a benchmark of eight well-known optimization problems
obtained from [16]. Then, we consider three real-world optimization problems
dealing with concrete engineering problems. In particular, we deal with the ten-
sion/compression spring design problem [4], the welded beam design problem [3],
and the speed reducer design problem [12]. All cases can be described as opti-
mization problems where a minimization has to be done subject to fulfill a given
set of constraints. For all the case studies, we compare the results obtained by
RFD with the results obtained by Particle Swarm Optimization (PSO [14]), Ar-
tificial Bee Colony (ABC [13]), Firefly Algorithm (FF [28]), and Social Spider
Optimization (SSO [5]).

Table 1 summarizes the results obtained with the first benchmark, while Ta-
ble 2 summarizes the results obtained with the three real-world engineering opti-
mization problems. In all cases, the results correspond with the average of 30 in-
dependent executions of each algorithm. Regarding the parameter tuning, in the
case of RFD the number of drops (numDrops) used was 50; numStepsNoImprove
was set to 10; the accuracy value varies between 4 and 8, depending on the
problem; the moveLimit value used in the experiments was 90; the initial value
of rangeFactor is 1 in all cases; while the time was set to values from 10 to 300
seconds. Regarding the other metaheuristics, we have used the configurations
described in [5].



H Problem ‘ PSO ‘ ABC ‘ FF ‘ SSO \ RFD H
Tension/compression|0.0148631[0.0128507[0.0129307[0.0127649[0.0127486

Welded-beam 2.01115 | 2.16736 | 2.19740 | 1.74646 | 1.727833

Speed reducer 3079.262 | 2998.063 | 3000.005 | 2996.113 | 2994.805

Table 2. Results for a benchmark of real-world optimization engineering problems

In order to appropriately compare the metaheuristics, we perform a statistical
test. In general, a Friedman test can be used to check whether the hypothesis
that all methods behave similarly (the null hypothesis) holds or not. However,
since the number of metaheuristics under consideration is low, using a Friedman
aligned ranks test is more recommended in this case. This test does not rank
methods for each problem separately (as Friedman test does), but construct a
global ranking where values of all methods and problems are ranked together. In
Friedman aligned ranks test, for each problem the difference of each method with
respect to the average value for all methods is considered, and next all values
of all problems are ranked together. Table 3 shows the results of applying an
Aligned Friedman test, considering five metaheuristics and eleven case studies
(that is, putting together all the case studies from both benchmarks). As it can
be seen, RFD obtains the highest overall score, with a very small difference over
SSO. In fact, a more detailed analysis using Holm‘s procedure shows that there
is not an statistical relevant difference between RFD and SSO. Although the null
hypothesis can not be rejected to differentiate RFD and SSO when considering
both benchmarks together, we can try to analyze each case study independently.
In this case, it is worth to mention that SSO outperforms RFD in the first set of
examples, while RFD outperforms SSO in the case of the real-world engineering
optimization problems. That is, RFD behaves better when the problems are
harder.

4 Conclusions

We have provided a first approach to adapt RFD to deal with continuous do-
main optimization problems. The results we have obtained are promising. In
particular, RFD obtains competitive results against ABC, PSO, FF, and SSO.
However, there is still plenty of space for improvement. Let us remark that in
our current approach we do not take profit from a basic RFD issue in discrete
domains: erosion. In fact, our main line of current work is integrating erosion
into continuous RFD. The basic idea is to use an alternative fitness function f’
recording erosion, where this f’ function is computed by using a data structure
that records information about all the positions that have been explored so far
by the algorithm.



"Metaheuristic‘RankingH
RFD 21,5455

SSO 22,7273
ABC 26,7273
PSO 29,9545

FF 39,0455

Table 3. Ranking Aligned Friedman Results

In addition to including erosion, we are also working on improving the perfor-

mance of the algorithm by providing a parallel implementation of our metaheuris-
tic. In this sense, we are using the parallel functional language Eden (see e.g. [15,
11,17]) to extend our library of parallel versions of metaheuristics (see [26]) to
deal with RFD.
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