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Algorithms for Short-Term Wind Speed Time Series 

Forecasting 
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Abstract. This paper addresses nonlinear time series modelling and prediction 
problem using a type of wavelet neural networks. The basic building block of 
the neural network models is a ridge type function. The training of such a net-
work is a nonlinear optimization problem. Evolutionary algorithms (EAs), in-
cluding genetic algorithm (GA) and particle swarm optimization (PSO), togeth-
er with a new gradient-free algorithm (called coordinate dictionary search opti-
mization – CDSO), are used to train network models. An example for real speed 
wind data modelling and prediction is provided to show the performance of the 
proposed networks trained by these three optimization algorithms. 

Keywords: Neural Network, Wavelet, Boosting, Optimization, Evolutionary 
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1 Introduction 

Many practical time series modelling problems can be described as follows. There is a 
response variable y (also known as output or dependent variable) that depends on a set 
of independent variables 1 2{ , ,..., }nx x xx  (also known as input or explanatory 

variables). Usually, a number of observations of both the output and input variables 
are available, which are denoted by { , }k ky x (k =1, 2,…,N). The true quantitative 
representation of the relationship between the output y and the input x is in general 
not known. The central task of data modelling is to establish quantitative representa-
tions, e.g. mathematical models such as y = f(x) + e (where e is model error), to ap-
proximate the input-output relationship as close as possible. 

There are a variety of methods and algorithms in the literature for dealing with dif-
ferent types of nonlinear data based modelling problems, such as system identification 
[1]-[4], data mining [5],[6], pattern recognition and classification [7], supervised sta-
tistical learning [8],[9]. Among these methods, system identification techniques pro-
vide a tool for deducing mathematical models from measured input and output data 
for dynamic processes. In general, the output signal y at time instant t depends on 
previous values of the input and output signals, such as ur(t-1), ur(t-2), …, ur(t- nu), 
y(t-1),…,y(t-ny), where r is the number of exogenous input variables, ny is the time lag 
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in the output, nu is the time lag in the inputs. For a time series without any external 
input, y(t) only depends on the previous output values such as y(t-1),…,y(t-ny). 

There is a diversity of methods and approaches for building a good function to ap-
proximate the function f or F for a given problem, including machine learning and 
neural networks, among others. In recent years, boosted regression has attracted ex-
tensive attention due to the work of [9]-[11], which connects boosting to general re-
gression models such as Gaussian, logistic and generalized linear models. In [12], a 
new form of boosted trees called aggregated boosted trees was proposed for ecologi-
cal system modelling and prediction. In [13], a boosting ridge regression was pro-
posed for solving a medical image processing problem. A boosted L1 regularized 
projection pursuit for additive model learning was proposed and applied to face cari-
cature generation and gender classification in [14]. An image based regression algo-
rithm using boosting method has been proposed for image detection and feature selec-
tion in [15]. In [16]-[18], a boosting method was integrated to projection pursuit re-
gression [19] to construct neural networks for spatio-temporal system identification. 
In order to improve the accuracy of flood forecasting, boosting approaches were pro-
posed and incorporated to kernel based modelling and forecasting systems in [20] and 
[21], respectively. Most recently, comparative studies have been conducted on ran-
dom forest regression, gradient boosted regression and extreme gradient boosting to 
tackle wind energy prediction and solar radiation problem [22]. It has been shown that 
ensemble methods can improve the performance of support vector regression for indi-
vidual wind farm energy prediction [22]. 

It is known that wavelet basis functions have the property of localization in both 
time and frequency [23]. Due to this inherent property, wavelet approximations pro-
vide the foundation for representing arbitrary functions economically using just a 
small number of basis functions, and this makes wavelet representations more adap-
tive compared with other basis functions [24]-[29]. This motivates us to develop a 
new family of neural networks where wavelet are used as the building blocks. 

The training of such networks is a nonlinear optimization problem, which can be 
solved by using either a classical gradient based algorithm or a modern meta-heuristic 
search algorithm. In this study, two population based algorithms, namely genetic al-
gorithm (GA) [30] and particle swarm optimization (PSOs) [31], together with a new 
derivative-free algorithm (called coordinate dictionary search optimization – CDSO), 
are applied to estimate the hyper-parameters of the wavelet network models.  

2 Structure of the Wavelet Neural Network 

2.1 The Framework of the Network  

Following the commonly used notation, it is assumed that the system y is related to 

the input vector 1 2[ , ,..., ]Tnx x xx  as below: 

( ) [ ( ); ] ( )y t F t e t x ș                                                                     (1) 
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where F[•] is a function which is normally unknown or unavailable but can be ap-
proximated by a set of functions estimated through machine learning, system identifi-
cation or other data modelling techniques, ș is a model parameter vector which can be 
estimated from data, and e(t) is unmeasurable noise sequence. 

This study considers to use a one-hidden-layer neural network to approximate the 
unknown function F as:  

1

[ ( ); ] ( ( ); ) ( )
K

k k k K
k

F t w g t r t


 x ș x ș                                              (2) 

where kg  (k=1,2,…, K) are basis functions whose structure and property are known, 

kș are parameter vectors, kw are weight coefficients (connection coefficients), K is 

the number of basis functions, and ( )Kr t is model error (residual).  

2.2 Ridge Type Wavelet Basis Function  

In this study, each of the functions kg (k=1,2…, K) in (2) is chosen to be the ridge 

type wavelet, which is of the form: 

1 0 1 1( ,..., ) ( ... ) ( )T
n n nh x x a a x a x      ș x                         (3) 

where  is a scalar function, a0, a1, .., an are called direction parameters, 

0 1[ , ,..., ]Tna a aș , and 1 2[ , ,..., ]Tnx x xx . The function ȥ in (3) can be any func-

tions with good representation properties including wavelet basis functions. Such a 
function is used as the elementary building block for model construction.  

2.3 Training of the Network  

Let y = [y(1), y(2),…, y(N)]T be the observation vector of the output signal and 

( ) [ ( ), ( ),..., ( )]Tk k k kt x t x t x tx   be the  observation vector (t =1,2, …, N) at instant t. 

Let ( ) ( ( ))Tt tȥ ș x , ( ; ) [ (1), (2),..., ( )]TN g ș ȥ ȥ ȥ , with 
1 2[ , ,..., ]n  x x x . 

The boosting procedure of the network is carried out in a stepwise manner; at each 
step a function that minimizes the projection error is determined. Starting with 0 r y , 

the first step is to find an element vector );( 11 șXgg   such that 
2

1 1 ( , ) 0( , ) argmin {|| ( ; ) || }ww w  șș r g ș . The resulting residual vector is defined 

as 1 0 1 1w r r g , which can be used as the “pseudo-reference” signal to find the sec-

ond element vector2g , and so on.  This procedure may repeat many times. At the kth 

step, we use the sum of squared errors, 2|| ||kr , to define a measure called the error-

to-signal ratio: 2 2
0ESR || || || ||k k r r and use this to monitor the iterative procedure - 

when ESR becomes smaller than a pre-specified threshold value. This measure can be 
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used to define a criterion called the penalized error-to-signal ra-
tio: 2PESR [ / ( )] ESRk kN N k   [16]-[18], where  is a small positive number 

which is normally in the range 1≤ Ȝ ≤0.005N. The maximum number of basis func-
tions included in the network can be determined as the number of iterations where 
PESR reaches its minimum.   

The cost function in the algorithm is defined as 

2 2
1 1 1

1

( ) || ( ; ) || [ ( ) ( ( ); )]
N

k k k
t

J w r k wg t  


    ș r g ș x ș                         (4) 

which can be solved through a boosted regression algorithm which is briefly summa-
rized below. 
_________________________________________________________________ 
The Boosted Projection Pursuit Regression algorithm: 

Initialization: 0 r y ;   k=1;    ESR(k) = 0;     PESR(k) = 0;  

while {k ≤ K};          //{ K is the maximum number of iterations}// 
          2

1
,

[ ; ] arg min  || ( ; ) ||k k k
w

w w  
ș

ș r g ș  ;   

         ( ; )k k g g ș ; 

         1k k k kw r r g ;    

         2 2
0ESR( ) || || || ||kk  r r ;  

         2PESR [ / ( )] ESRk kN N k  ; 

          k = k +1; 
end while 
__________________________________________________________________ 

3 Network Training 

The optimization of the parameters in the cost function (4) can be achieved by means 
of either a classical gradient based algorithm or a modern meta-heuristic search algo-
rithm. Once the estimates of the required parameters are available, the The function 
F[•] in (2) can then be represented as a linear combination of the estimated functions  
gk (k=1,2…, ). 

3.1 Evolutionary Algorithms 

Two evolutionary algorithms, namely, genetic algorithm (GA) [30] and particle 
swarm optimization (PSO) [31] are considered in this study. Matlab toolbox for GA 
and PSO is available in Mathworks products (Matlab 2018b). A large amount of in-
formation on evolutionary algorithms is readily and easily available publically in the 
literature, descriptions for these algorithms are therefore omitted here to save space. 
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3.2 Coordinate Dictionary Search Optimization (CDSO) Algorithm 

For comparison purpose, a new coordinate dictionary search optimization (CDSO) 
algorithm is presented in this section. 

2D Case  

Let 
1 2( , )f x x be a function defined in 2D, and the objective is to find its global mini-

mum point, with a box constrainti i ia x b  (i=1,2).  We first define the basic unit 

search directions as 
1 2 8{ , ,..., }BD d d d , where the id ’s are: 

                
1 2 3 4 5 6 7 8                                                            

1 0 1   0 1 1 1   11 1 1 1
, , , , , , ,

0 1   0 1 1   1 1 12 2 2 2

d d d d d d d d

                 
                                

 

The eight unit directions are shown in Fig. 1, where the first four directions are in 
the first, third, fifth and seventh quadrant lines, while the other four are in the second, 
fourth, sixth and eighth quadrant lines, respectively. 

 
 

 

 

 

 

 

 

          Fig. 1.  An illustration of the basic unit search directions for 2D case functions. 

Then we define the scaled search directions as below: 

0

1

10

0 0 1 0 2 0 8

1 1 1 1 2 1 8

10 10 1 10 2 10 8

{ , ,..., }

{ , ,..., }

...

{ , ,..., }

s B

s B

s B

D s D s d s d s d

D s D s d s d s d

D s D s d s d s d

 


 


  

                                                    (5) 

where
ms (m =0,1,…,10) are scale coefficients which are defined as: 

10 m
ms r                                                                                         (6) 

d

d

d

d

d

d

d
d
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The parameter r in (6) is adjustable, it determines the maximum step-size (learning 
rate) for network training. The dictionary used for parameter optimization is a combi-
nation of all these scaled dictionaries, that is, 

0 1 10
...s s sD D D D    . 

n-Dimensional Case  

The 2D case can easily be extended to a general n dimensional case. Assume that a 
box constraint is given asi i ia x b   (i =1,2, …, n). We define the basic coordinate 

search directions
1 1 2 2{ , ,..., }nD d d d  as below: 

                       

1 2 1 1 2                      ...     

1 0 0 1   0   0

0 1 0   0 1   0
, ,..., , , ,...,   

... ... ...  ...  ...  ...

0 0 1   0   0 1

n n n nd d d d d d 

           
                      
           
                      

 

 
We then use the 2n unit vectors to generate new unit vectors as: 
 

1 2

1

2 1 2

1 2

2 1 2

1
{ , } [1,1,0,...,0,0]

2
1

{ , } [1,0,0,...,0,1]
2

     ...
1

: { , } [1, 1,0,...,0,1]
2

1
{ , } [1,0,0,...,0, 1]

2
     ...

1
{ , } [0,0,0,..., 1, 1]

2

T

T
n

T
n

T
n

T
n n

d d

d d

D d d

d d

d d





 

 


  

  




  


                                          (7)     

Note that group (7) comprises a total of 22 2n n  unit vectors. The basic unit dic-
tionary DB is made up of all the elements of basic coordinate dictionary D1 and all the 
elements of the group D2. The basic dictionary therefore contains a total of 2n2 unit 
vectors, which are denoted by: 

1 2{ , ,..., }B MD d d d , with 22M n .  

Similar to the 2D case, we define the scaled search directions as: 

1 2 2{ , ,..., }
ms m B m m m nD s D s d s d s d                                             (8) 

where
ms (m =0,1,…,10) are scaling coefficients which are the same as in in (6). The 

dictionary used for optimization is a combination of all these scaled dictionaries, that 

is, 10

0 msm
D D


 . 
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Outline of the CDSO Algorithm  

The implementation of the proposed CDSO algorithm briefly summarised below. 
_________________________________________________________ 
Initialization:     Number of decision variables (dimension);  
                          Constraint boundary [lb, ub]; 
                           Maximum search distance (parameter R); 
                           Maximum iteration (itMax);   
                           Tolerate threshold (Tol )  
                           Guessed initial condition (x0); 
1.   Generate the dictionary D 
2.   t =1;  
3.   x(t) = x0; 
4.   Find the best direction (denoted by dbest);  
5.   Record the current best solution xbest(t) = x(t) + dbest; 
6.   Check the stop criterion;  
7.   t = t+1;  x0 = xbest(t); 
Repeat 3 to 7 until the specified stop criterion is met.  
_____________________________________________________________ 

4 Case Study – Wind Speed Forecasting 

The proposed method is applied to real wind speed data, which were acquired from 
our research collaborators. The hourly wind speed data were collected at the Berkhout 
wind station, Netherlands, for the period of January-December 2004. The data were 
measured by the Royal Netherlands Meteorological Institute. For demonstration pur-
pose, we use the data of November 2004 to train the network model and use the data 
of December of 2004 to test the model prediction performance. The training data (1-
30 November 2004) and test data (1-31 December 2004) are shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Graphical illustration of the hourly wind speed data (1 November – 31 December 2004).   
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4.1 The Model  

Let the value of wind speed at time instant t be designated by y(t) (t = 1, 2, …, N). We 
are interested in predicting y(t) using the previous values at the time instants t-1, t-2, 
… , t-n. We consider the following model:   

( ) [ ( 1), ( 2),..., ( )] ( )y t F y t y t y t n e t                                         (9) 

    For convenience of description, we use ( )jx t  to denote y(t-j), with j = 1,2, …, n. So 

model (9) can be written as: 

 1 2( ) [ ( ), ( ),..., ( )] ( )ny t F x t x t x t e t                                                   (10) 

    We then use the training data to train a wavelet neural network model by the three 
algorithms:  GA, PSO and CDSO. The following well-known sinc function (also 
known as the Shannon wavelet scaling function) [32] is used as the basis function to 
build the network model: 

sin
( )

x
x

x




                                                                                         (11) 

With the above sinc function, the ridge type function ( )T ș x  is: 

 0 1 1

0 1 1

sin [ ( ) ... ( )]
( ) ( )

[ ( ) ... ( )]
n nT T

n n

a a x t a x t

a a x t a x t


 


  

 
  

ș x ș x                     (12) 

where 0[ ,..., ]Tna aș and 1[ ( ),..., ( )]Tnx t x tx . Note that the Shannon wavelet scal-

ing function (11) is not differentiable, meaning that the conventional gradient descent 
type algorithms cannot be directly used to train the associated wavelet neural network.  

4.2 Model Performance  

Primary simulation results suggest that the time delay in (9) can be chosen as n =4. 
With this choice, the three optimization algorithms (GA, PSO, and CDSO) were used 
to train wavelet neural network models. The final wavelet networks trained by the 
three algorithms contain 22, 9, and 9 basis functions, respectively. To ensure that the 
“best” (i.e. better optimized) basis function is added to the network model in each 
iteration, both GA and PSO algorithms are run 10 times in each search iteration and 
the basis function that gives the best performance is included in the model. 

The changes of the penalized error-to-signal ratio (PESR) for the three algorithm 
(GA, PSO and CDSO), calculated on the training data, are shown in Fig. 3. Note that 
initially PESR decreases with the increase of the number of the basis functions in-
cluded in the network, but somewhere in some later stage it begins to increase due to 
the effect of the penalty factor (see Section 2.2). Therefore, the boosting procedure 
can be terminated at an iteration k* where PESR(k*) > PESR(k*-1), to avoid overfit-
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ting. The value of k*  for PSO, CDSO and GA is 9, 9, and 22, respectively, suggesting 
that the best network models trained by the three algorithms should include 9, 9, and 
22 basis functions, respectively.  

 The PESR values of the best models generated by PSO (with 9 basis functions), 
CDSO (with 9 basis functions) and GA (with 22 basis functions) are 0.0334, 0.0296, 
and 0.0238, using respectively. In terms of time complexity, it turns out that the CPU 
time for PSO, CDSO and GA to achieve the three best models is 48.23 s, 61.33 s and 
436.70 s, respectively.  
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  The change plot of PESR on the training data. 

For an illustration, the model predicted values, produced by the network trained us-
ing the CDSO algorithm over the test data (1-31 December 2004), are plotted in Fig. 
4, where the corresponding measurements are also displayed for a comparison pur-
pose. It can be seen that the obtained wavelet neural network model shows excellent 
prediction performance.  

5 Conclusion 

The main focus of the work has been paid on a type of boosted additive models. The 
main contributions are as follows. First, a framework of the model established based 
on a ridge type function was proposed. The main advantage of the proposed frame-
work is that it allows high dimensional data modelling problems. Second, a boosted 
projection pursuit regression algorithm was presented. With such an algorithm, we 
can conveniently build a model step by step, until it achieves a good approximation. 
Third, we showed that either a derivative-free algorithm or an evolutionary algorithm 
can be used to train the networks. Given the fact that in many applications the cost 
functions may not be differentiable, we therefor proposed a coordinate dictionary 



10 

 

search (CDSO) algorithm, which works well for training the network models when 
integrated to the boosted projection pursuit regression algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.   A comparison of the model predicted values with the measurements on the test data (1 
- 31 December 2004).  

It is worth mentioning that the properties of the proposed boosted projection pur-
suit regression algorithm and the coordinate dictionary search algorithm have not 
been fully investigated. There are still several open questions that remain to be ex-
plored and answered. For example, in addition to Shannon wavelet scaling function, 
there perhaps exist many better alternative choices (e.g. Gaussian wavelet, radial basis 
function could be one of them); we will explore these in future work. We would also 
carry out further assessments on the performance of the proposed method and com-
pare with traditional feedforward neural networks and state-of-the-art approaches. 

While CDSO, GA and PSO algorithms all provide a zeroth-order optimization ap-
proach, meaning that they do not need gradient information, it does not necessarily 
mean that these methods would always be superior to gradient based algorithms. In 
this respect, it would be interesting to integrate the gradient boosting machine (GBM) 
to the boosted projection pursuit regression algorithm, to explore the advantage of 
GBM and investigate the potential to improve the performance of gradient-free algo-
rithms.  
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