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Abstract. This paper addresses nonlinear time series modelling and prediction
problem using a type of wavelet neural networks. The basic builddady bf

the neural network models is a ridge type function. The trainirsyicii a net-
work is a nonlinear optimization problem. Evolutionary algorithms (EAs), in
cluding genetic algorithm (GA) and particle swarm optimizati®8Q@), togeth-

er with a new gradient-free algorithm (called coordinate dictiosaaych opti-
mization— CDSO), are used to train network models. An example for real speed
wind data modelling and prediction is provided to show the pedoce of the
proposed networks trained by these three optimization algorithms.

Keywords: Neural Network, Wavelet, Boosting, Optimization, Evolutionary
Algorithms, Time Series, Wind Speed, Forecastidafa-Driven Modelling.

1 Introduction

Many practical time series modelling problems can be described as follows. Taere is
response variable y (also known as output or dependent variable) that deparsis o

of independent variatdex ={X, X,,...,X,} (also known as input or explanatory

variables). Usually, a number of observations of both the output andvapables
are available, which are denoted py,, X,} (k =1, 2,....N). The true quantitative

representation of the relationship between the output y and thexripuh general

not known. The central task of data modelling is to establish quantitative representa-
tions, e.g. mathematical models such asffx) + e (where e is model error), to ap-
proximate the input-output relationship as close as possible.

There are a variety of methods and algorithms in the literature for deatmdif-
ferent types of nonlinear data based modelling problems, such as gieiification
[1]-[4], data mining [5],[6], pattern recognition and classificatidh supervised sta-
tistical learning [8],[9]. Among these methods, system identification techsigto-
vide a tool for deducing mathematical models from measured input and datau
for dynamic processes. In general, the output signal y at time instiptehds on
previous values of the input and output signals, sudh(g4), W(t-2), ..., U(t- ny),
y(t-1),...,y(t-ny), where r is the number of exogenous input variableis, the time lag



in the output, mis the time lag in the inputs. For a time series without any ettern
input, y() only depends on the previous output values such d3,y(ty(t-ny).

There is a diversity of methods and approaches for building afgootion to ap-
proximate the function f or F for a given problem, including Iiae learning and
neural networks, among others. In recent years, boosted regrhasi@ttracted ex-
tensive attention due to the work of [9]-[11], which connects baps$tirgeneral re-
gression models such as Gaussian, logistic and generalized linealsmod12], a
new form of boosted trees called aggregated boosted trees waseplrémoscologi-
cal system modelling and prediction. In [13], a boosting ridge régresgs pro-
posed for solving a medical image processing problem. A boostegdularized
projection pursuit for additive model learning was proposed and appliedecacéri-
cature generation and gender classification in [14]. An image based regragsion
rithm using boosting method has been proposed for imageidatand feature selec-
tion in [15. In [16]-[18], a boosting method was integrated to projectionrsyit re-
gression [19] to construct neural networks for spatio-temporgray&lentification.
In order to improve the accuracy of flood forecasting, boostingoaphes were pro-
posed and incorporated to kernel based modelling and forecasting sysf{ajsaimd
[21], respectively. Most recently, comparative studies have been conducted-on
dom forest regression, gradient boosted regression and extremengtambsting to
tackle wind energy prediction and solar radiation problem [2Bhs been shown that
ensemble methods can improve the performance of support veatessieg for indi-
vidual wind farm energy prediction [22].

It is known that wavelet basis functions have the property of localizatiboth
time and frequenc§23]. Due to this inherent property, wavelet approximations pro-
vide the foundation for representing arbitrary functions economicallyg ysist a
small number of basis functions, and this makes wavelet representati;nsicap-
tive compared with other basis functions [24]-[29]. This motivates wet@lopa
new family of neural networks where wavelet are used as the builldicigsb

The training of such networks is a nonlinear optimization problehichacan be
solved by using eithea classical gradient based algorithmaonodern meta-heuristic
search algorithm. In this study, two population based algorithamagly genetic al-
gorithm (GA) [30] and particle swarm optimization (PSBJ)], together with a new
derivative-free algorithm (called coordinate dictionary search optimizatobSO),
are applied to estimate the hyper-parameters of the wavelet network models.

2 Structure of the Wavelet Neural Network

2.1 TheFramework of the Network

Following the commonly used notation, it is assumed that the systemehatied to
the input vectorX =[X,, X,,...,X, ] as below:

y(t) = F[x(D; 0] + €} @



where Fe] is a function which is normally unknown or unavailable but came
proximated by a set of functions estimated through machine hegasystem identifi-
cation or other data modelling techniqu@ss a model parameter vector which can be
estimated from data, and e(t) is unmeasurable noise sequence.

This study considers to use a one-hidden-layer neural netwopptoxamate the
unknown function F as:

FIx(1);6] =ZV\4<9k(X(D: 0,) + 5 (9 (@)

where g, (k=1.2,..., K) are basis functions whose structure and property are known,
0, are parameter vectorsy, are weight coefficients (connection coefficients), K is
the number of basis functions, angd(t) is model error (residual).

2.2 Ridge TypeWavelet Basis Function

In this study, each of the functiorg (k=1,2..., K) in (2) is chosen to be the ridge
type wavelet, which is of the form:

h(X, ... %)= @+ 8 %+ ..+ & X)=y 0'x) ®)

where is a scalar function, ¢a a1, .., & are called direction parameters,
v

0=[a, a,..., q]T, andX =[x, X ,...,xn]T . The functiony in (3) can be any func-

tions with good representation properties including wavelet basis functions.aSuc
function is used as the elementary building block for model construction

2.3  Training of the Network

Let y = [y(1), W2),..., Y(N)]" be the observation vector of the output signal and
X (t) =[% (1), X (t),...x ¢)] be the observation vectar<1,2, ..., N) at instant

Let w(t) =y (0'x(t)) » 9(®;0) =[w(D),y(2),...w N )], With @ =[x, X,,...,X, ]-
The boosting procedure of the network is carried out in a stepwiseemat each
step a function that minimizes the projection error is determined. Staitimg, w y

the first step is to find an element vectog, =g(X;0,) such that
(0, W) =argmin, ,, {[lr,-wg @ 9) fi]. The resulting residual vector is defined
asl; =ry,—Wd,, which can be used as the “pseudoreference” signal to find the sec-

ond element vectd, , and so on. This procedure may repeat many times. At the kth
step, we use the sum of squared errfji |f to define a measure called the error-

to-signal ratioESR_=|f, f|/ K, 3fand use this to monitor the iterative procedure -
when ESR becomes smaller than a pre-specified threshold valuendéusire caneb



used to define a criterion called the penalized etoaignal ra-
tio: PESR = N /(N -4k )f ESR [16]-[18], where 4 is a small positive number
which is normally in the rangé< 1 <0.005N. The maximum number of basis func-
tions included in the network can be determined as the number of iteratiwre

PESR reaches its minimum.
The cost function in the algorithm is defined as

Je2(0) =lIr, — wg @:0) [F= Z [fc. (K)— wg & (1)0)F “)

which can be solved through a boosted regression algorithm whiclefly Bumma-
rized below.

The Boosted Projection Pursuit Regression algorithm:
Initialization: 'y =Y ; k=1; ESR(K)=0; PESR(k)=0;

while {k <K} /{K is the maximum number of iterations}//
[0 w] =argmin{ [ir_,~wg (@ H)f]} :
9 =9(®:6,):
Me =T =Wl

ESR&)=1r, fi/ ¥ 1

PESR = N /(N-4k )T ESR;
k=k+1;
end while

3 Network Training

The optimization of the parameters in the cost function (4) can be achieveealmg

of eithera classical gradient based algorithmaomodern meta-heuristic search algo-
rithm. Once the estimates of the required parameters are available, the The function
F[+] in (2) can then be represented as a linear combination of the estimatgdrsi

Ok (k=1,2...,).

3.1 Evolutionary Algorithms

Two evolutionary algorithms, namely, genetic algorithm (GA) [30Y qarticle
swarm optimization (PSO) [31] are considered in this study. Matlab toétivd®A
and PSO is available in Mathworks products (Matlab 2018b). A large arabimt
formation on evolutionary algorithms is readily and easily available publicatlye
literature, descriptions for these algorithms are therefore omitted here to sase spac



3.2 Coordinate Dictionary Search Optimization (CDSO) Algorithm

For comparison purpose, a new coordinate dictionary search optimizatidcO(CD
algorithm is presented in this section.

2D Case
Let f(x,,X,)be a function defined in 2D, and the objective is to find itsajlofini-

mum point, with a box constraigt< x < b(i=1,2). We first define the basic unit

search directions a, ={d, d,,..., d}} , where th(di ’s are:

IS 1

The eight unit directions are shown in Fig. 1, where the first fourtdirecare in
the first, third, fifth and seventh quadrant lines, while the otherdmain the second,
fourth, sixth and eighth quadrant lines, respectively.

d d

Fig. 1. An illustration of the basic unit search directions for 2D case functions.

Then we define the scaled search directions as below:

D, =%Ds={84d $d... ¢
D, =9D;={sd $d... s¢ ®)

Dsm =5,D; ={ S.odl S0 dz' %o @
wheres, (m=0,1,...,10) are scale coefficients which are defined as:

s, =10"r (6)



The parameter r in (6) is adjustable, it determines the maximum steflesinging
rate) for network training. The dictionary used for parameter optimizéia combi-
nation of all these scaled dictionaries, thaDss D, + D +...+ D -

n-Dimensional Case

The 2D case can easily be extended to a genadahensional case. Assume that a
box constraint is given @< x < b (i =1,2, ..., n). We define the basic coordinate

search direction®, ={d, d,...,d, } as below:

d d d d, 4, - d
17701 [o][-1][ ©

0|1 0| O|-1

We then use the 2n unit vectors to generate new unit vectors as:

1
d, d} »—=110,...,0,0T
{ 17 2} \/41—2[ ]
d, d} »—-1,0,0,...,0,1
{ il n} \/45[ ]

. T -
D,:{{d, d_ } _)Tzll’ 1,0,..,0,1]

{d, d,} 4—}2[1,0,0,...,0,—1]T

{d, , d,} —>\/i§[0,0,0,...,—1,—1]T

Note that group (7) comprises a total2i* — 2n unit vectors. The basic unit dic-
tionary Ds is made up of all the elements of basic coordinate dictionagn® all the
elements of the group DThe basic dictionary therefore contains a total &f @t

vectors, which are denoted by, ={d, d,...,d,}, WithM = an?.
Similar to the 2D case, we define the scaled search directions as:

Dsm :SmDB:{qu’ $ng’ §1 gr} (8)

wheres (m=0,1,...,10) are scaling coefficients which are the same as in in (6). The
dictionary used for optimization is a combination of all these scaled dictiorua¢s,
is, D=J° D

-0 " Sm



Outline of the CDSO Algorithm
The implementation of the proposed CDSO algorithm briefly sunsedtielow.

Initialization:  Number of decision variables (dimension);
Constraint boundary [lb, ub];
Maximum search distance (parameter R);
Maximum iteration (itMax);
Tolerate threshold (Tol )
Guessed initial condition (x0);
Generate the dictionary D
t=1,
X(t) = x0;
Find the best direction (denoted by dbest);
Record the current best solution xbest(t) = x(t) + dbest;
Check the stop criterion;
. t=1t+1; x0 = xbest(t);
epeat 3 to 7 until the specified stop criterion is met.

IANoGOrwNE

4  Case Study — Wind Speed Forecasting

The proposed method is applied to real wind speed data, which wereedcijam
our research collaborators. The hourly wind speed data were collectedatkheut
wind station, Netherlands, for the period of January-December Z0@4data were
measured by the Royal Netherlands Meteorological Institute. For demonsgration
pose, we use the data of November 2004 to train the network modeseirde data
of December of 2004 to test the model prediction performance. The ¢raiata (1-
30 November 2004) and test data (1-31 December 2004) are shBignn

14+ 1
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Fig. 2. Graphical illustration of the hourly wind speed data (1 Ndxem 31 December 2004).



41 TheModd

Let the value of wind speed at time instant t be designated by (1) & ..., N). We
are interested in predicting y(t) using the previous values at the timetsnstnt-2,
..., t-n. We consider the following model:

y(©) = FIY(t-1), y(t=2),....y ¢ = n)}+ e(t) ©)

For convenience of description, we usjegt) to denote y(t-j), with#1,2, ..., n. So
model (9) can be written as:

y(®) = F[x(0, %(1),.... %, )]+ () (10)

We then use the training data to train a wavelet neural network motlet byree
algorithms: GA, PSO and CDSO. The following well-known sinc func{aiso
known as the Shannon wavelet scaling function] [82ised as the basis function to
build the network model:

_sinzXx

p(X) = (11)
X

With the above sinc function, the ridge type functig(®' x) is:

sin(z[a, +a %()+...+ g % (D)) (12)

w(07x) = p(0'x) = mlag+a X()+...+ a x( ]

where® =[a,,..., 3,1 and x =[x(1),...,x, ()] . Note that the Shannon wavelet scal-

ing function (11) is not differentiable, meaning that the conventiondigmadescent
type algorithms cannot be directly used to train the associated waveletnmetwark.

4.2 Mode Performance

Primary simulation results suggest that the time delay in (9) candserclas n =4.
With this choice, the three optimization algorithms (GA, PSO, and CDSO) were used
to train wavelet neural network models. The final wavelet netsviseined by the
three algorithms contain 22, 9, and 9 basis functions, respectivebnsiwe that the
“best” (i.e. better optimized) basis function is added to the network model in each
iteration, both GA and PSO algorithms are run 10 times in each search itaradion
the basis function that gives the best performance is included in the model.

The changes of the penalized ertossignal ratio (PESR) for the three algorithm
(GA, PSO and CDSO), calculated on the training data, are shown i&. Rgte that
initially PESR decreases with the increase of the number of the basisohs in-
cluded in the network, but somewhere in some later stage it begins to éndteai
the effect of the penalty factor (see Section 2.2). Therefore, théingppsocedure
can be terminated at an iterationvkhere PESR(k > PESR(k1), to avoid overfit-



ting. The value of kfor PSO, CDSO and GA is 9, 9, and 22, respectively, suggesting
that the best network models trained by the three algorithms should icl@dand
22 basis functions, respectively

The PESR values of the best models generated by PSO (with 9 basis &)nction
CDSO (with 9 basis functions) and GA (with 22 basis functions) are30,@B0296,
and 0.0238, using respectively. In terms of time complexity, it touhshat the CPU
time for PSO, CDSO and GA to achieve the three best models is 48.23 ss Gh®@3
436.70 s, respectively.

0.04 T T -

0.038¢ ‘B-CDSO

0.036 | ©GA
PSO

0.034

x h

% 0.032

L

o 0.03
0.028 -
0.026 -

0.024 -

Iteration

Fig. 3. The change plot of PESR on the training data.

For an illustration, the model predicted values, produced by the netradmied us-
ing the CDSO algorithm over the test data (1-31 December 2004), are ploftied in
4, where the corresponding measurements are also displayed fomparison pur-
pose. It can be seen that the obtained wavelet neural network modelestomisnt
prediction performance.

5 Conclusion

The main focus of the work has been paid on a type of boosté&t@adadodels. The
main contributions are as follows. First, a framework of the model establisised b
on a ridge type function was proposed. The main advantage ofdpesped frame-
work is that it allows high dimensional data modelling problems. Secobdpsted
projection pursuit regression algorithm was presented. With such artlailgowe
can conveniently build a model step by step, until it achieves a good apatiox.
Third, we showed that either a derivative-free algorithm or an evoluyi@gorithm
can be used to train the networks. Given the fact that in many applicat®oossh
functions may not be differentiable, we therefor propoaembordinate dictionary
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search (CDSO) algorithm, which warkvell for training the network models when
integrated to the boosted projection pursuit regression algorithm.

15+ a
—Measurement
. —Model predcition
2
E 10 1
©
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700 800 900 1000 1100 1200 1300 1400 1500
Sampling Index (hour)

Fig. 4. A comparison of the model predicted values with the measuremetite test data (1
- 31 December 2004).

It is worth mentioning that the properties of the proposed bogstgdction pur-
suit regression algorithm and the coordinate dictionary search algorithen nogayv
been fully investigated. There are still several open questions that rermbéex-
plored and answered. For example, in addition to Shannon wavelet scalatigrf,
there perhaps exist many better alternative choices (e.g. Gaussian waveldiasaslial
function could be one of them); we will explore these in future wor&.Wiluld also
carry out further assessments on the performance of thesgemoethod and com-
pare with traditional feedforward neural networks and si&tee-art approaches.

While CDSO, GA and PSO algorithms all provide a zeroth-order optimization ap-
proach, meaning that they do not need gradient information, it riziesecessarily
mean that these methods would always be superior to gradient basedhralkgjohit
this respect, it would be interesting to integrate the gradient boosting maGRiNg (
to the boosted projection pursuit regression algorithm, to exploradbentage of
GBM and investigate the potential to improve the performance of gradierdiffee
rithms
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