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Abstract. Minimal Learning Machine (MLM) is a nonlinear learning
algorithm designed to work on both classification and regression tasks.
In its original formulation, MLM builds a linear mapping between dis-
tance matrices in the input and output spaces using the Ordinary Least
Squares (OLS) algorithm. Although the OLS algorithm is a very efficient
choice, when it comes to applications in big data and streams of data,
online learning is more scalable and thus applicable. In that regard, our
objective of this work is to propose an online version of the MLM. The
Online Minimal Learning Machine (OnMLM), a new MLM-based formu-
lation capable of online and incremental learning. The achievements of
OnMLM in our experiments, in both classification and regression scenar-
ios, indicate its feasibility for applications that require an online learning
framework.

Keywords: online learning, incremental learning, stochastic optimiza-
tion, Minimal Learning Machine.

1 Introduction

The learning algorithm of many popular machine learning methods, such as the
Least Squares Support Vector Machine (LSSVM) [I4] and the Extreme Learning
Machine (ELM) [3], are based on a batch method, such as the Ordinary Least
Squares (OLS). Even though batch approaches perform well in some cases, they
present some major drawbacks: (i) they lack scalability for larger datasets; (ii)
they cannot be used in scenarios where data are sequentially made available [7].

Both aforementioned issues are usually tackled by online learning techniques.
For instance, the classical backpropagation algorithm [8] has been fundamental
to enable the use of machine learning models in real world applications with
large and/or sequential data. Thus, some authors have directed their efforts
to propose alternative formulations, both algorithmically and mathematically,
for standard batch learning-based methods in order to perform online learning.
Santos and Barreto [12] proposed an approach to train the LSSVR following an



online method which is able to obtain sparse solutions incrementally from the
data. Jian et al. [4] proposed the Budget Online LSSVM, which significantly
scales LSSVM through an online learning approach. Online variants of the ELM
can also be found in the literature, such as the Online Sequential ELM (OS-
ELM) [2] and its recent improvement by Matias et al. [10]. Efforts torwards online
learning can also be found for ensemble methods such as Gradient Boosting [I]
and Random Forests [6].

The recently proposed Minimal Learning Machine (MLM) [I3] aims to tackle
the general supervised learning task also from a batch learning perspective. The
MLM considers a linear mapping between input and output distance matrices,
computed from the available data points and M reference points randomly cho-
sen from the dataset. In the generalization step, the learned distance map is used
to provide an estimate of the distance from the output reference points to the
unknown target output value [I1]. This mapping assumes that a multi-response
linear regression method is applied between the distance matrices. In the original
MLM formulation, such solution is obtained via the batch OLS algorithm. Thus,
the MLM inherits the lack of scalability and the inability to handle streaming
data of other batch learning techniques.

In this context, our objective is to introduce a feasible online and incre-
mental learning formulation for the MLM. Our proposal, named Online MLM
(OnMLM), is able to handle both regression and classification tasks in scenarios
where batch approaches are not feasible. The OnMLM starts with one input and
one output reference points and, as the training is performed, it incrementally
increases the multi-response linear system by adding new reference points based
on a given criterion. The new mechanisms provided by the OnMLM requires
the addition of three new hyperparameters. However, such hyperparameters are
very intuitive and can be easily set.

The properties offered by OnMLM makes it suitable and scalable to appli-
cations involving large datasets, and since the training is performed online, the
OnMLM is also applicable to datastreams scenarios. Also, we must emphasize
that OnMLM reaches always sparser solutions in comparison to MLM, as a con-
sequence of its ability to incrementally add new reference points. Furthermore,
our formulation for OnMLM can be optimized with any variant of the Stochas-
tic Gradient Descent (SGD) algorithm. Thus, one can use OnMLM with more
efficient SGD variants, boosting its generalization performance and speeding the
training phase. To summarize, our contribution with this work is an online for-
mulation based on the SGD algorithm for the MLM model which incrementally
includes reference points in the online learning step, with the additional benefit
of reaching much sparser solutions.

We have organized our paper by presenting a full description of the MLM
and the OnMLM models in Section 2] - in the OnMLM formulation, we show a
special focus in providing an overview about the newly included three hyperpa-
rameters. We then follow with the experiments performed in both regression and
classification scenarios in Section [3] Finally, the conclusions we have obtained
with this work are presented in Section [



2 Methods

2.1 Minimal Learning Machine

Consider a set of input points X = {&; € RP : i = 1,..., N} and their corre-
sponding outputs Y = {y;, € R? : i = 1,..., N}.We can define the following
distance matrices D, whose elements are defined by d;; = ||z; — s;||2, and A
whose elements are given by d;; = ||y; — t;||2. The point denoted by 7; and t;,
named referrence points, are randomly selected vectors from X and ), respec-
tively. Their corresponding sets are defined as S = {s; € X : j = 1,..., M}
and T ={t; € Y:j=1,...,M}, where M is the number of reference points.
Under the assumption of a linear mapping between D and A, we can obtain a
multiresponse regression model

A=DB+E, (1)

where E is the residual matrix.
Thus, the objective of the MLM is to obtain the optimal parameters B which
minimizes the multivariate residual sum of squares:

argénin J(B) = tr[(A — DB)"(A — DB)]. 2)

It is noteworthy that the reference points are randomly chosen before op-
timizing the objective function in Eq.. Furthermore, the optimization prob-
lem above can be solved in two different ways: (¢) with the usual optimal least
squares when M < N, and (i7) uniquely solvable with the direct inverse of D
when M = N. To better understand the training process of the MLM, step by
step, we describe its training algorithm in the Algorithm [T}

Algorithm 1 Training procedure for MLM.

Input: Training sets X and Y, and the number of reference points M.
Output: The optimal weights B and the sets S and T.
1: Randomly selects M reference points from X and their correspond output from ),
in order to obtain the sets S and T, respectively.
2: Compute the input distance matrix D from X and S.
Compute the output distance matrix A from ) and T.
4: Calculate B = (DTD)"'D”A.

W

Supposing that B was either estimated (M < N) or uniquely solved (M =
N), for an arbitrary input test point x; € RP, and its representation in the
distance space d; = [||x; — 812, ..., ||Zi — sarll2]”, the MLM will predict the
output related to the distance space

6, =d'B. (3)



The vector §; provides an estimate of the geometrical configuration of Y;
related to the input test x; and the reference set 7. To recover the estimation of
y,; from Si, MLM solves a multilateration problem. From a geometric view point,
locating y, € RY is equivalent to solve the overdetermined set of M nonlinear
equations corresponding to g-dimensional hyper-spheres centered in ¢; which
passes through y,. Fig. [1| graphically depicts the problem for ¢ = 2.

Fig. 1: Output estimation.

Thus, given the set of j = 1,..., M hyper-spheres, each with radius equal
to d;, the location of y, can be estimated by finding the optimal solution of the
following objective function:

M

arg min T(i) =) [y — tj)T(yz' —t;) - 5123]2 (4)

Y; j=1

2.2 Online Minimal Learning Machine (Proposal)

To initiate the OnMLM formulation, we must highlight that, unlike MLM, which
have the same number of reference points M in the input set S and in the output
set T, the OnMLM may have different number of reference points My and M,
respectively. The original formulation of MLM adds pairs of points as reference
points (z; € X,y,; € V) for each i-th indexation chosen to represent a reference
point. On the other hand, the OnMLM adds new reference points in S and
T independently — in fact, the new reference point criterion, which we will be
introduced later, determines if an input «; or its related output y, will become
a new reference input point or a new reference output point, respectively, in a
supervised way. To proceed with the OnMLM formulation let us redefine sets S
and T asS={s;eX:j=1,.... M;Jand T ={t, € YV :k=1,..., M}



Let X} and ), be the sets of the input patterns and the expected outputs
of the [-th mini batch. As in the standard MLM learning algorithm, we must
compute the distance input matrix D; = [d;;] = [||@; — s;||2] and the distance
output matrix A; = [§;x] = [||ly; — tk|l2], where i =1,..., Ny, j=1,..., My, and
k=1,...,M;. Under the assumption of a linear mapping between D; and A,
we have that:

Al = DlW + El, (5)

where W € RMsxM: ig the weight matrix and E; is the [-th residual matrix.
Our objective is to find the optimal W that minimizes the mean squared
sum of residuals for each D; and A;, so that

N; M,

TW) = 5130 6~ dTw?, (6)

=1 k=1

where w.;, is the k-th column of W and diT is the i-th row of D;.
Considering the SGD algorithm, the matrix W can be updated by

new 9T (W
W, :w:k'_nﬁ.k)a szlv"'7Mta (7)

where 7 is the learning rate parameter.

The formulation presented above composes the weight updating rule of On-
MLM, however it does not explains how the reference points are included during
the training step. We must emphasize that OnMLM initiates the training process
with only one input and one output reference points (s1,¢1) that were randomly
selected from X and Y, respectively. After that, at several iterations, one point is
evaluated and included in the set reference points if the error reduction is higher
than a pre-defined threshold. The criterion for adding new reference points is
based on the hyperparameters I" > 0, v > 0, and 0 < 5 < 1. The value I" de-
termines the iterations in which the OnMLM will verify if a new set of reference
points can be added, while v is the error threshold in the new reference point
criterion. The [ parameter is used to update the value of v, in order to adjust
the error threshold along with the learning process of the OnMLM. Algorithm
summarizes how new reference points are included, being triggered after the
weight matrix updating.

It is important to highlight that the weight matrix W increases as the number
of input and output reference points increases — remember that W € RMs*M:
which implies that for each new input reference point the number of lines in
W increases by one. A similar consequence is observed for each new output
reference points, however, in this last case, the number of columns in W is
increased. Furthermore, from Algorithm [2] we can see that the v value is not
constant (step 4), but rather updated each time the new reference point criterion
algorithm is executed. In summary, the criterion enables the model to decide if
a new input pattern or expected output will become a reference point looking
at the related error of each input pattern at the current [-th mini-batch.



Algorithm 2 New reference point criterion.

Input: The hyperparameters I and (3, the initial value for -, the current iteration I,
the updated weight matrix W, the distance matrices D; and A;, and the sets A&}
and ).

Output: The new sets of input and output reference points S™** and T"¢".

1: Verify if I (mod I') = 0. If yes, then go to step 2; otherwise, stop the algorithm.
2: Compute the expected output distance matrix: A, =D/W.
3: Compute the mean squared error obtained by each input vector d;:
82 = ]%Itdiag[(Al — Al)(Al — AZ)T].
4: Update ~:
y=py+(1—-B)7, y=max{e?:i=1...,N}.
5: Update the sets S and T:
S =SU{x; €X e >y,i=1,..., N},
Trew =T Uf{y, €Vi:el >v,i=1,...,N}.

As stated before, the OnMLM model includes 3 new parameters (I', v and j)
and the task of adjusting such parameters may seem challenging . However, as
we will argue, the adjustment intuitive. First, consider I" > 0. Such parameter
controls the frequency in which the model executes Algorithm [2] checking for
new input and output reference points in the current I-th mini-batch. To choose
a coherent value for I', one must consider the following: (i) each line and column
of W is randomly initialized with positive and negative values; and (ii) the
OnMLM training is based on SGD. From (i) and (é¢), one can realize that, for
each new input or output reference point, a line or a column with random values
will be included in W, and the model will require a number of iterations large
enough to reach stability before adding new reference points, since the model
is trained via SGD. This implies that I" must not be a small value, but large
enough to reach some stability in the current matrix W. Also, a large value
for I' can lead the training process of the model to be slow. Taking this in
consideration, and after some experiments with Adam algorithm [5], we verified
that I' = [%] x 50 is a good value — note that N is the number of training
samples and N; the number of training samples in the [-th mini-batch.

Let us now focus on the v > 0 parameter, which delimits if a input/output
pattern will become a reference point. As shown in Algorithm [2 the parame-
ter v is updated considering the maximum quadratic error ¥ among the errors
in the [-th mini-batch. For regression problems we recommend to use as initial
value v = 0 because vy will be adjusted during the training process. For instance,
assume [ > 0, then the v provides the lower bound for adding new reference
points. If 7 > , then the new value of v increases, but under the convex combi-
nation between 7 and ~, it remains lower than 7, so that at least the pair (x;, y;)
related to the maximum quadratic error 7 of the current mini-batch will become
a reference point. On the other hand, if ¥ < «, then the new value of v decreases,
but remains greater than 7 and no reference point will be added. This implies
that as the error is increasing, new reference points are being added; unlike,
when the error is decreasing, no reference points are being added. Also, we must
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Fig. 2: v value fluctuation along 20000 epochs with 8 = 0.99 applied to the BHG
dataset.

emphasize that at some point of the training process, the model can experience
a continuous error reduction, which can lead v to be very small. As a conse-
quence of a small v, a new maximum quadratic error 7 > « can arise, adding
new reference points. This dynamic adds new reference points in a supervised
way, so that, when the model is experiencing excessive error values (instability)
during the training process, the number of reference points tends to increase. On
the other hand, when the model has the necessary information provided by the
current reference points and performed a large enough number of iterations to
stabilize W, the training error tends to stabilizes, making it difficult to include
new reference points. The same dynamic applies for classification scenario, how-
ever, in such a scenarios, we recommend the initial value to be v = 1 to speed
up the training process (this only applies for 1-hot coded expected outputs).

In Fig. 2| we show the ~ value fluctuation for 20000 epochs and § = 0.99
applied to the Boston Housing (BHG) dataset from UCI Machine Learning [9]
— some information about such a dataset can be seen in Table[Il The model was
trained via Adam algorithm. In this Figure, one can see the blue line, which
corresponds to the values of « through the epochs and the red spots, showing
the time at which at least one reference point was added. Taking a closer look on
this Figure, one can see that at the beginning of the training process, where the
model is experiencing large errors, a bigger number of reference points is added
(epochs 0-5000). However, after the epoch 5000, the algorithm stabilizes and a
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Fig. 3: v value fluctuation through 2e 4+ 4 epochs with 5 = 0.01 applied to BHG
dataset.

reduced number of reference points are added. It is also noticeable the occurrence
of some peaks in v between the epochs 5000-12500 where no reference point is
being added. This behavior occurs because this peaks of v are being provided
by patterns that are already reference points, and since the operation for adding
new reference points is based in the union operation, a pattern that is already
a reference point which provides a maximum quadratic error 5 > « will not be
added as a reference point.

At last, we can make some considerations about the § € [0,1] parameter.
This parameter is used in the convex combination between 7 and . For v — 0,
the value of gamma will tend to reach the current value of 7. In such a scenario,
fewer reference points will be added, which can lead to poor generalization, and
the value of v will suffer some deep fluctuations. This scenario is depicted in
Fig. |3l The only difference concerning that one from Fig. [2] is that 5 = 0.01,
and the number of input and output reference points reached is 46 and 35,
respectively. From figures [2] and [3] one can see that a value for § — 1 provides
a more stable learning process .

Despite the three new OnMLM parameters, a main difference between On-
MLM and MLM relies on the fact that OnMLM do not use duplicated output
reference points. For instance, to make it clear, let us consider a binary classi-
fication problem with M > 2. In this scenario, the MLM will use M reference
points, so that there will be M > 2 output reference points and some of than



will be duplicated. On the other hand, the union operation used by OnMLM in
the Algorithm [2] avoid such a duplication, providing much sparse solutions at
the output reference point space.

3 Experiments

To provide an overview of OnMLM capabilities, we have performed experiments
considering both classification and regression tasks. We compared the OnMLM
with the standard MLM and the Multilayer Perceptron (MLP). For each task
we have used 3 datasets obtained from UCI Machine Learning repository [9],
totalizing 6 datasets: Abalone with 3 classes (ABA3C), Adult (ADU), Bank
Marketing (BKM), Boston Housing (BHG), Abalone (ABA), and Wine Quality
(WIN). Tab. (1| summarizes the information datasets information: The column
task identifies the task proposed by each dataset, where we have C for classifi-
cation and R for regression. The columns p and g specify the dimension of the
input and output vectors, respectively — notice that for classification tasks, ¢
represents the number of classes. The column test size says the proportion used
to evaluate the model in each scenario.

Table 1: Summary of datasets informations.

Dataset task  #samples P q  test size (%)

ABA3C C 4177 8 3 33%
ADU C 45222 14 2 33%
BKM C 45211 16 2 33%
BHG R 506 13 1 20%
ABA R 4177 8 1 33%
WIN R 6497 11 1 33%

The training of both OnMLM and MLP (with one hidden layer) was per-
formed using the Adam algorithm with 8; = 0.9, 82 = 0.999, and € = 1le — 8 [4].
Concerning the learning rate, we have used n = le — 3 for MLP, while for On-
MLM we have set n = le — 2 in regression tasks and n = le — 3 in classification
tasks. We have performed a 5-fold cross validation to optimize the number of
reference points of the standard MLM and the size of the MLP hidden layer.
For both OnMLM and MLP, we performed the simulations with mini batches
of sizes N; = 256 (ABA3C, ABA, and WIN), N; = 64 (BHG), and N; = 512
(BKS, ADU, and BKM). The maximum number of epochs was 2000. The pa-
rameters for OnMLM were fixed: we set I' = f%] x 50 for all datasets, v = 1.0
for classification and v = 0 for regression. We used 8 = 0.95 for all datasets.

The results for classification and regression can be viewed in Tab. [2] We must
emphasize that, for ADU and BKM datasets, we have trained MLM with 6000
training samples in order to ensure computational efficiency. The first comment



we should make about OnMLM is related to its superiority concerning sparsity
degree compared to standard MLM. For all applications, the OnMLM achieves
fewer number of input and output reference points, with special attention to
BKM and WIN datasets — even when OnMLM performance was inferior to
MLM (WIN dataset), the standard MLM required almost the entire training
dataset to be used as reference points.

Table 2: Classification accuracy and regression MSE, number of input/output
reference points, and hidden layer size (# Neurons) averaged over 10 runs.

Dataset ~ Model Accuracy (o) # Neurons M M,
MLP 67.5 (0.9) 40.1
ABA3C MLM 65.6 (1.6) — 238.0 238.0

OnMLM 65.6 (1.0) 153.3 3.0
MLP 80.2 (0.4) 78.1

ADU ~MLM 78.3(0.5) 540.0  540.0
OnMLM 82.5 (0.6) 317.3 2.0
MLP 89.0 (0.1) 119.1

BKM MLM 88.3(0.5) 900.0 900.0
OnMLM 88.9(0.3) 150.7 2

MSE (o)

MLP 1de +1(3.7) 40.1 - -

BHG ~ MLM 1.2c 1 1(44) - 396.0  396.0
OnMLM T5c +1(4.6) - 110.4 843
MLP 6(1.7¢ — 1) 5.0 ] -

ABA  MLM 4 5(22¢ 1) 5 9100 210.0
OnMLM 16 (2.4e—1) - 172.6  22.6
MLP 5.5¢ — 1 (1.1e — 2) 29.3 - _

WIN MLM 3.9e — 1 (2.4¢ — 2) 3764.7 3764.7
OnMLM _ 5.0e — 1 (2.3¢ — 2) . 352.7 7.0

Concerning the accuracy of the methods, we can say that OnMLM in general
outperforms MLM, with an exception for ABA3C dataset. Also, although the
OnMLM reached lower accuracy than MLP in the ABA3C dataset and equivalent
accuracy in the BKM dataset, the OnMLM performed well when compared to
its counterparts in the ADU dataset. Finally, taking a close look into the MSE
measures for the regression tasks, one can see that the MLM is always superior,
although the OnMLM still obtains much sparser solutions.



4 Conclusions

We have presented the OnMLM, a feasible formulation based on MLM for per-
forming online and incremental learning. Thus, OnMLM greatly increases the
applicability of MLM, since it is able to tackle large datasets and data streams.
Furthermore, the proposed OnMLM is able to reduce the number of input and
output reference points when its hyperparameters are carefully chosen. The new
reference points criterion is of central importance because of the incremental na-
ture of the training procedure and the sparseness of the generated model. Those
particularities turn OnMLM a promising online learning method. Future works
intend to provide more detailed analysis of the OnMLM incremental behavior
and investigate alternatives for enabling it to remove reference points in the
training step.
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