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Abstract. The traditional ground-and-solve approach to Answer Set
Programming (ASP) suffers from the grounding bottleneck, which makes
large-scale problem instances unsolvable. Lazy grounding is an alterna-
tive approach that interleaves grounding with solving and thus uses space
more efficiently. The limited view on the search space in lazy grounding
poses unique challenges, however, and can have adverse effects on solv-
ing performance. In this paper we present a novel characterization of
degrees of laziness in grounding for ASP, i.e. of compromises between
lazily grounding as little as possible and the traditional full grounding
upfront. We investigate how these degrees of laziness compare to each
other formally as well as, by means of an experimental analysis using a
number of benchmarks, in terms of their effects on solving performance.
Our contributions are the introduction of a range of novel lazy grounding
strategies, a formal account on their relationships and their correctness,
and an investigation of their effects on solving performance. Experiments
show that our approach performs significantly better than state-of-the-
art lazy grounding in many cases.

Keywords: Answer Set Programming · Lazy grounding · Heuristics.

1 Introduction

Answer Set Programming (ASP) [2, 9, 12, 13] is a declarative knowledge repre-
sentation formalism that has been applied in a variety of industrial and scientific
applications. The success of ASP is rooted in efficient solvers such as clingo [8]
or DLV [15], which apply the ground-and-solve approach, i.e. they first instanti-
ate the given non-ground program and then apply a number of efficient solving
techniques to find the answer sets of the variable-free (i.e., ground) program.

This approach suffers from the grounding bottleneck since in many practical
and industrial applications the ground program is too large to fit in memory.

? The final authenticated publication is available online at https://doi.org/10.1007/
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Problem instances in industrial applications can be quite large and cannot be
grounded by modern grounders such as gringo [10] or I-DLV [3] in acceptable
time and/or space [6].

Lazy-grounding ASP systems such as gasp [18], ASPeRiX [14], OMiGA [5],
and most recently Alpha [23] successfully avoid the grounding bottleneck by
interleaving grounding and solving, but suffer from substandard search perfor-
mance. For practical applications one can now decide between running out of
memory with a ground-and-solve system, or running out of time with a lazy-
grounding system. Since the grounding bottleneck is an inherent issue of the
ground-and-solve approach, improvements of lazy-grounding ASP solving are an
important contribution for dealing with large, real-world problem instances.

Therefore, we equipped Alpha with state-of-the art heuristics successfully
employed by other ASP solvers, namely MOMs [19] for initialization of heuristic
scores and VSIDS [17] for their dynamic modification. Both have been imple-
mented in a similar fashion as in clasp [11]. Somewhat surprisingly, however,
those heuristics improved performance of lazy-grounding solving by a much
smaller degree than expected. A subsequent investigation revealed that lazy
grounding does not provide sufficient information on the search space for such
heuristics to perform adequately, because by grounding lazily the solver has only
a limited view on the search space. This is a novel challenge for ASP solving,
which traditional ground-and-solve ASP solvers did not have to face.

In order to improve solving performance this work investigates ways to offset
the limited view of the search space in lazy-grounding ASP solving. We explore
various lazy-grounding strategies to find compromises between full upfront gro-
unding and largely blind search heuristics. In summary, the contributions of this
work are:

– the introduction of a field of novel lazy-grounding strategies for ASP evalu-
ation,

– a formal investigation of how these grounding strategies compare to each
other and to previously known ones, as well as

– an experimental analysis in terms of their effects on solving performance,
showing that our approach is able to perform significantly better than state-
of-the-art lazy grounding in many cases.

Outline: After preliminaries in Section 2, novel lazy-grounding strategies are
introduced in Section 3 and their relationships are formally investigated. Sec-
tion 4 presents experimental results, and Section 5 concludes.

2 Preliminaries

Let C be a finite set of constants, V be a set of variables and P be a finite set of
predicates. A (classical) atom is an expression p(t1, . . . , tn) where p is an n-ary
predicate and t1, . . . , tn ∈ C ∪ V are terms, and a literal is either an atom a or
its default negation not a. An Answer-Set Program P is a finite set of (normal)
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rules of the form

h← b1, . . . , bm, not bm+1, . . . , not bn. (1)

where h and b1, . . . , bm are positive literals (i.e. atoms) and not bm+1, . . .,
not bn are negative literals. Given a rule r, we denote by H (r) = {h}, B(r) =
{b1, . . . , bm, not bm+1, . . . , not bn}, B+(r) = {b1, . . . , bm}, and B−(r) = {bm+1,
. . . , bn} the head, body, positive body, and negative body of r, respectively. If
H (r) = ∅, r is a called a constraint, and a fact if B(r) = ∅. Given a literal
l, set of literals L, or rule r, we denote by vars(l), vars(L), or vars(r) the set
of variables occurring in l, L, or r, respectively. A literal l or rule r is ground
if vars(l) = ∅ or vars(r) = ∅, respectively. The set of all ground atoms is de-
noted by Atgrd . A program P is ground if all its rules r ∈ P are. As usual,
in the remainder of this work we only consider safe programs P , where each
rule r ∈ P is safe, i.e., each variable occurring in r also occurs in its positive
body, formally, vars(r) ⊆ vars(B+(r)). The function pred : 2A → 2P maps a
set of atoms to their predicates, e.g. pred({a(1, 2), a(X,Y )}) = {a/2}. The set
heads(P ) = {H (r) | r ∈ P} contains the heads of all rules in P .

An (Herbrand) interpretation I is a subset of the Herbrand base w.r.t. P ,
i.e., I ⊆ Atgrd . An interpretation I satisfies a literal l, denoted I |= l, if l ∈ I
for positive l and l /∈ I for negative l. I satisfies a ground rule r, denoted I |= r,
if B+(r) ⊆ I ∧ B−(r) ∩ I = ∅ implies H (r) ⊆ I and H (r) 6= ∅. Given an
interpretation I and a ground program P , the FLP-reduct P I of P w.r.t. I is
the set of rules r ∈ P whose body is satisfied by I, i.e., P I = {r ∈ P | B+(r) ⊆
I ∧ B−(r) ∩ I = ∅}. I is an answer set of a ground program P if I is the
subset-minimal model of P I .

A substitution σ : V → C is a mapping of variables to constants. Given an
atom at the result of applying a substitution σ to at is denoted by atσ; this
is extended in the usual way to rules r, i.e., rσ for a rule of the above form
is hσ ← b1σ, . . . , bmσ, not bm+1σ, not bnσ. The grounding of a rule is given by
grd(r) = {rσ | σ is a substitution for all v ∈ vars(r)} and the grounding grd(P )
of a program P is given by grd(P ) =

⋃
r∈P grd(r). The answer sets of a non-

ground program P are given by the answer sets of grd(P ).
Computing all answer sets such that grd(P ) is constructed lazily is typi-

cally done by a loop composed of two phases: given a partial assignment (that
is initially empty), first ground those rules that potentially fire under the cur-
rent assignment, second expand the current assignment (using propagation and
guessing). If the loop reaches a fixpoint, i.e., no more rules potentially fire and
nothing is left to propagate or guess on, and no constraints are violated, then
the current assignment is an answer set (cf. [16,23] for a detailed account of the
Alpha ASP system). A (partial) assignment A is a set of signed atoms where
A+ denotes the atoms assigned a positive value and A− those assigned a negative
value in A. Note that for this work it is sufficient to consider A to be Boolean
(while the solving component of Alpha also considers a third and positive truth
value must-be-true). Given an assignment A, a ground rule rσ stemming from
a non-ground rule r ∈ P and a substitution σ, if B+(rσ) ⊆ A+ holds then rσ
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is of interest w.r.t. A and must be grounded, because rσ potentially fires under
A. Given two assignments A,A′ we define the combination A]A′ = B to be an
assignment such that B+ = A+ ∪A′+ and B− = A− ∪A′−.

3 Lazy-Grounding Strategies

Currently, a ground rule is only returned to the solver if it is of interest, i.e., if
its positive body is fully satisfied. This is a very restrictive grounding strategy
in order to save space and avoid the grounding bottleneck. As experience shows,
this maximally strict grounding strategy employed by Alpha results in non-
optimal search performance, because state-of-the-art search procedures, derived
from propositional SAT solving, only operate on grounded parts of the problem.
With maximally strict lazy-grounding these search procedures (most importantly
branching heuristics) are left mostly blind, because a large part of the given
problem instance simply has not been grounded yet.

In the following we thus investigate more permissive lazy-grounding strategies
that lie between the maximally strict one and the full upfront grounding (the
maximally permissive grounding strategy). The more permissive a grounding
strategy, the less restrictions it poses on ground rules produced by the grounder.
Thus, ground rules are produced earlier and in higher quantity, which allows
search procedures to be more informed about the problem at hand.

Definition 1. Let P be an answer-set program, A be the set of assignments,
Gm = 2Atgrd be the set of possible grounder memories, and R ⊆ P the set of
rules of P that are not ground. Then, a lazy-grounding strategy is a function
s : A × Gm × R → Gm × 2grd(P ) mapping a triple of assignment, grounder
memory, and a rule with variables to a new grounder memory and a set of
ground instances of the rule, i.e., (A,G , r) 7→ (G ′, R′) with R′ ⊆ grd(r).

Observe that a grounder memory G ⊆ 2Atgrd is a subset of the Herbrand base
HBP = Atgrd and thus can be seen as one half of an assignment, i.e., either A+

or A−. Since rules in ASP must be safe, a grounding substitution for all variables
of the positive body of a rule is also a grounding substitution for the whole rule.
Therefore, it is sufficient to consider only the positive body for lazy grounding.

Considering both negative and positive body atoms could allow a more re-
strictive grounding than currently employed in Alpha, because a grounding
instantiation could be rejected if one of the negative body literals is currently
true. This approach, however, would require the solver to ground additional rules
also when backtracking in the search, because backtracking removes assignments
and those could then lead to negative body atoms no longer being true. Thus
in Alpha grounding only considers the positive body of a rule and we follow
this choice here. In the remainder of this work we therefore identify a grounder
memory G with an assignment A such that A+ = G and A− = ∅, i.e., a grounder
memory identifies a fully positive assignment.

In order to avoid ground instantiations of rules that can never be applicable
we introduce a notion for deterministically inactive rules. Intuitively, a rule is
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inactive if it contains a positive literal over a predicate that does not occur in
any rule head (or fact) and hence cannot be derived, or if it contains a negative
literal that also occurs as a fact in the program hence its negation never holds.
Formally, given a ground rule r ∈ grd(P ), r is inactive if there exists a ∈ B+(r)
with pred(a) /∈ pred(heads(P )) or a ∈ B−(r) with a ∈ A(facts(P )).4

The formalization of Alpha’s default grounding strategy is as follows.

Definition 2. The default grounding strategy for a program P is a lazy-grounding
strategy gsdef (A,G , r) = (G ′, R) such that G ′ = A+ and R = {r′ ∈ grd(r) | r′ is
not inactive and of interest w.r.t. A}.

The following notion helps to characterize a class of grounding strategies
that are at least as permissive as the maximally strict strategy and strictly less
permissive than the maximally permissive strategy.

Definition 3. A ground rule r ∈ grd(P ) is weakly applicable w.r.t. an assign-
ment A if B+(r) ∩A− = ∅ and r is not inactive.

Intuitively, a ground rule r is weakly applicable if is not inactive and no positive
body atom is assigned false.

Given an assignment A, a (non-ground) rule r, and a substitution σ such
that rσ is ground, we call the set LA of positive literals of r whose grounding
is in A, i.e., LA = {l ∈ B+(r) | lσ ∈ A+}, the assigned literals of rσ w.r.t. A;
furthermore, if vars(LA) = vars(r) we say rσ is all-variable-assigning w.r.t. A.

Definition 4. A ground instance rσ of a non-ground rule r ∈ P is k-unassigned
w.r.t. an assignment A if it is weakly applicable, its set LA of assigned literals is
all-variable-assigning, and |B+(r)\LA| ≤ k, i.e. at most k literals in the positive
body of rσ are still unassigned.

For grounding strategies based on k-unassignedness, we further distinguish
between constraints and normal rules, because these two types affect the search
procedure in different ways (as Section 4 shows). A modified grounder then re-
turns all ground rules that can be produced w.r.t. the current partial assignment
and that are kco-unassigned in the case of constraints or kru-unassigned in the
case of other rules, where kco and kru are parameterizable. Values kco = kru = 0
yield the maximally strict grounding strategy, i.e., a rule is 0-unassigned if and
only if it is of interest. The field of novel grounding strategies then is as follows.

Definition 5. The k-unassigned grounding strategy for a program P is a lazy-
grounding strategy gskco,kru

(A,G , r) = (G ′, R) such that G ′ = A+ and R = {r′ ∈
grd(r) | H (r′) = ∅, r′ is kco-unassigned w.r.t. A} ∪ {r′ ∈ grd(r) | H (r′) 6= ∅, r′ is
kru-unassigned w.r.t. A}.

4 The notion of inactive rule could be generalized to cover more rules, but we decidedly
chose a syntactic condition that is easy to check algorithmically.
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Strategies with kco > kru ground more constraints than rules, allowing
better-informed search heuristics and at the same time fewer superfluous ground
rules. Intuitively, these grounding strategies yield a larger grounding in each
step of a lazy-grounding solver, but they are still limited to only yield ground
instances of rules that are very close to the current search path, since k-unassign-
edness requires all variables to be bound by instances in the current assignment.

To give the grounder more freedom such that ground instances can be ob-
tained that are further away from the current search path, we introduce accumu-
lator grounding strategies. The core idea is to use the grounder memory to store
ground atoms that were encountered earlier in another branch of the search for
answer sets but are not necessarily true in the current branch of the search.

Definition 6. The default accumulator grounding strategy for a program P is
a lazy-grounding strategy gsaccudef (A,G , r) = (G ′, R) such that G ′ = G ∪ A+ and
R = {r′ ∈ grd(r) | r′ is not inactive and of interest w.r.t. G ′ ]A}.

Using such an accumulator the grounder is able to obtain ground instances
resulting from a combination of different search paths. The accumulator can also
be added to the k-unassigned grounding strategy as follows.

Definition 7. The k-unassigned accumulator grounding strategy for a program
P is a lazy-grounding strategy gsaccukco,kru

(A,G , r) = (G ′, R) such that G ′ = G∪A+

and R = {r ∈ grd(r) | H (r) = ∅, r is kco-unassigned w.r.t. G ′ ] A} ∪ {r′ ∈
grd(r) | H (r′) 6= ∅, r′ is kru-unassigned w.r.t. G ′ ]A}.

Relationships Between Lazy-Grounding Strategies. Some of the lazy-grounding
strategies introduced above are subsumed by others, i.e., the sets of ground
rules produced by some grounding strategies are subsets of those produced by
others. First, each k-unassigned grounding strategy is subsumed by a k + 1-
unassigned grounding strategy, intuitively because a k-unassigned rule also is a
k + 1-unassigned rule. Formally, and more detailed:

Proposition 1. Given an assignment A, a grounding memory G, and a rule
r. Let gskco,kru

(A,G , r) = (G ′, R) and gsk′
c,k

′
r
(A,G , r) = (G ′′, R′), then R ⊆ R′

for any k′co ≥ kco and k′ru ≥ kru.

Proof. Let gskco,kru
(A,G , r) = (G ′, R) and r′ ∈ R. Then r′ is either a kco-

unassigned constraint or a kru-unassigned rule and because k′co ≥ kco and k′ru ≥
kru it follows that r′ is either a k′co-unassigned constraint or a k′ru-unassigned
rule, respectively. In either case it holds that r′ ∈ R′ for gsk′

c,k
′
r
(A,G , r) =

(G ′′, R′).

Second, each k-unassigned strategy subsumes the default grounding strategy.

Proposition 2. Given an assignment A, a grounding memory G, and a rule r.
Let gsdef (A,G , r) = (G ′, R) and gskco,kru

(A,G , r) = (G ′′, R′), then R ⊆ R′ for
any kco, kru ≥ 0.



Degrees of Laziness in Grounding 7

Proof. Let gsdef (A,G , r) = (G ′, R) and r ∈ R, then r is not inactive and of
interest w.r.t. A, i.e., B+(r) ⊆ A+. By the latter, it holds that r is 0-unassigned
and consequently r ∈ R′ for gs0,0(A,G , r) = (G ′′, R′). From Proposition 1 it
then follows that r ∈ R′ for any gskco,kru

(A,G , r) = (G ′′, R′) with kco, kru ≥ 0.

Third, the accumulator variant of a grounding strategy subsumes the gro-
unding strategy without accumulator.

Proposition 3. For an assignment A, a grounding memory G, and a rule r:

1. if gsdef (A,G , r) = (G ′, R) and gsaccudef (A,G , r) = (G ′′, R′) then R ⊆ R′.
2. if gskco,kru

(A,G , r) = (G ′, R) and gsaccukco,kru
(A,G , r) = (G ′′, R′) then R ⊆ R′

for any kco, kru ≥ 0.
3. if gsaccukco,kru

(A,G , r) = (G ′, R) and gsaccuk′
co,k

′
ru

(A,G , r) = (G ′′, R′) then R ⊆ R′
for any k′co ≥ kco and k′ru ≥ kru.

Proof. 1. Let gsdef (A,G , r) = (G ′, R) and r ∈ R, thus by definition it holds
that r is not inactive and of interest w.r.t. G ′ = A+. For the accumulator
variant it holds that G ′′ = G ∪ A+ and R′ = {r ∈ grd(r) | r is not inactive and
of interest w.r.t. G ′′}. Since G ′ ⊆ G ′′ and the assignment corresponding to a
grounder memory is an assignment A such that A+ = G ′ and A− = ∅, it holds
that r is of interest w.r.t. G ′′, i.e., r ∈ R′. 2. and 3. are analogous.

Soundness and Completeness. We show in the following that all grounding
strategies are sound and complete, i.e., in a lazy-grounding ASP solver one may
freely exchange one grounding strategy for another.

Proposition 4. Given a lazy-grounding ASP solver S which is sound and com-
plete for the default grounding strategy gsdef , then S is sound and complete for
the k-unassigned grounding strategies gskco,kru

, and their respective accumulator
variants gsaccudef and gsaccukco,kru

.

Proof. Soundness immediately follows from the respective definition, because
every ground rule returned by any of the above grounding strategies is a ground
rule of the original program. Formally, let (G ′, R) be the returned pair of any
of these strategies then for all r ∈ R holds that r ∈ grd(r) and thus r ∈ grd(P )
where P is the input program.

Completeness: S is complete for gsdef , intuitively if a ground rule r fires under
some assignment A then r is of interest w.r.t. A and hence returned by gsdef .
Observe that a rule that is inactive can never be applicable in any answer set,
hence the additional requirement to only consider rules that are not inactive has
no effect on completeness. Completeness for all other grounding strategies then
follows from propositions 1 to 3, showing that every other grounding strategy
produces at least the same ground rules as gsdef .

The lazy-grounding strategies gsdef ,gskco,kru
, gsaccudef , and gsaccukco,kru

are sound
and complete for Alpha, since Alpha is sound and complete for gsdef (cf. [23]).
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The Effect of Domain Predicates. It is well-known for practical ASP solving
that the choice of encoding employed for a task can have a major influence
on solving performance, even though the semantics is still declarative. Such an
effect can also be observed in conjunction with grounding strategies based on
k-unassignedness. Assume that dom is a domain predicate in the sense of [22],
i.e. a predicate defining the domain over which p and q are defined, and con-
sider the constraint c as follows: ← p(X), q(Y ). If p(1) ∈ A+ and q(t) /∈
A+ holds for all terms t then c is not 1-unassigned, because Y is not yet
bound and thus c is not all-variable-assigning. Extending c with domain predi-
cates to obtain c′ gives ← dom(X), dom(Y ), p(X), q(Y ). Assuming that dom(1)
holds together with p(1) ∈ A+ and q(1) /∈ A+ then yields the ground rule
← dom(1), dom(1), p(1), q(1) which is 1-unassigned w.r.t. A+. In such a case,
the 1-unassigned lazy-grounding strategy yields no ground instances for c but
some for c′. Hence an earlier grounding of constraints (and rules) can be initiated
by adding (superfluous) domain predicates.

Adding domain predicates allows finding a solution with fewer backtracks,
because the additional ground constraints support early propagation and inform
the search heuristics better. This is not a guaranteed improvement, however,
since more ground constraints also need more space. A grounder can add do-
main predicates automatically or use the heads of previously grounded rules to
generate bindings even if those heads are not true yet. But this is future work.

4 Experimental Results

To evaluate the novel grounding strategies an experimental study was carried out
using two benchmark problems, Graph Colouring and House Reconfiguration.

Experimental Setup. Experiments were run on a cluster of machines each with
two Intel R© Xeon R© CPU E5-2650 v4 @ 2.20GHz with 12 cores each, 252 GB
of memory, and Ubuntu 16.04.1 LTS Linux. Benchmarks were scheduled with
the ABC Benchmarking System5 [20] together with HTCondor

TM

.6 Time and
memory consumption were measured by pyrunlim,7 which was also used to
limit time consumption to 15 minutes per instance and swapping to 0.

Encodings and Instances. The encoding for Graph Colouring was taken from the
Fourth Answer Set Programming Competition [1], with a choice rule replacing
the original disjunctive rule without altering semantics of the problem. The en-
coding for the House Reconfiguration Problem was taken from [21], but changed
to a decision problem, since optimization is not yet supported by Alpha.

Problem instances from the ASP Competitions [1,4] decidedly were not used,
because these are hand picked to exercise search techniques of ground-and-solve

5 https://github.com/credl/abcbenchmarking
6 http://research.cs.wisc.edu/htcondor
7 https://alviano.com/software/pyrunlim/

https://github.com/credl/abcbenchmarking
http://research.cs.wisc.edu/htcondor
https://alviano.com/software/pyrunlim/
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systems, some of which are not (yet) available in lazy-grounding ASP solving,
like restarts and equivalence preprocessing.8

For Graph Colouring, Erdős–Rényi graphs [7] were generated9. Let (V,E,C)
denote a class of Graph Colouring instances, where V denotes the number of
vertices, E the number of edges, and C the number of colours. For each con-
figuration in the set {(V,E,C) | V ∈ {10, 20, . . . , 190, 200, 250, . . . , 450, 500},
E
V ∈ {4, 8, 16}, C ∈ {3, 5}} \ ({(V,E, 5) | V ≥ 180, EV = 16} ∪ {(V,E, 5) | V ≥
100, EV = 8}), 11 graphs were generated. This makes 1430 instances in total. The
values for E and C were chosen to obtain a diverse set of instances based on
values used for the ASP competitions.

Instances for the House Reconfiguration Problem were also generated ran-
domly. For each number of things T ∈ {5, 10, . . . , 40, 45}, 11 instances were
generated. This makes 99 instances in total. For each instance, the number of
persons P was drawn from a uniform distribution U{2, bT2 c+ 1} and the owner
of every thing was drawn from U{1, P}. Every thing had a 50% chance to be in
a cabinet, which was then drawn from a uniform distribution. A random subset
of given things was considered as long things, the cardinality Tlong of which was
drawn from a normal distribution and then fit into the available range {0, . . . , T}
by computing Tlong = min(T, |n|) after drawing n from N (0, T 2).

Results and Discussion. Using the method described above, we obtained data
on Alpha’s resource consumption for processing the benchmarks. For each in-
stance, Alpha was instructed to find 10 answer sets. To reduce the numbers of
data points in the scatter plots in this section, we do not show every problem
instance, but the median performance data for each size and class of problem in-
stances.10 For example, all 11 Graph Colouring instances of each class (V,E,C)
are condensed into one data point for each pair of grounding strategies compared
by the plot.

Fig. 1 shows the resource usage needed to find the first 10 answer sets of
each benchmark instance, comparing strict (kco = 0) to permissive (kco = ∞)
grounding of constraints. Each data point in the scatter plots corresponds to
one class of problem instances of the same size solved by two different grounder
configurations for kco ∈ {0,∞} and varying kru ∈ {0, 1,∞}. The location of each
data point on the x axis corresponds to resource usage with kco = 0, its y location
to resource usage with kco =∞. Hence, a data point on the diagonal corresponds
to a problem instance where strict (kco = 0) and permissive (kco =∞) perform
equally well. Data points that are located below the diagonal indicate that an
instance could be solved faster when using kco = ∞, while those above the
diagonal represent an instance that could be solved faster when using kco = 0.

8 Graph Colouring benchmark instances, for example, are prohibitive even for Clasp
with those techniques disabled by --sat-prepro=no --eq=0 -r no -d no.

9 Using the Python function networkx.generators.random graphs.gnm random graph.
10 Computing the median of an odd number of performance data allows to obtain a

measure of central tendency that is unaffected by timeouts.
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Fig. 1: Time and guesses comparing gs0,kru
to gs∞,kru

for kru ∈ {0, 1,∞}
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Fig. 2: Time and guesses comparing gsaccu0,kru
to gsaccu∞,kru

for kru ∈ {0, 1,∞}

Instances that exceeded the given time-out of 900 seconds line up at the end of
each axis. Time usage is shown in Fig. 1a, number of guesses in Fig. 1b.11

Since most data points in Fig. 1 are located below the diagonal, it is evi-
dent that permissive grounding of constraints led to faster solving in most cases
of Graph Colouring and all cases of House Configuration. Comparing Figs. 1a
and 1b shows an even greater advantage of permissive grounding when the num-
ber of guesses is considered.

When strict and permissive settings for kru instead of kco are compared, no
clear conclusion can be drawn which value yields the best performance. Due to
space constraints, the corresponding plots are not shown.

Fig. 2 shows the same instances for the accumulator variants of the same gro-
unding strategies. Again, the general pattern indicates that permissive grounding
of constraints (kco =∞) improves performance. Comparing those plots to Fig. 1

11 Numbers of guesses are only shown for instances that could be solved within the
given time limit.
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Fig. 3: Time and guesses comparing gskco,kru
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for kco, kru ∈ {0, 1,∞}
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Fig. 4: Time consumption for two classes of Graph Colouring instances (without
accumulator)

shows a noticeable change of the performance in Graph Colouring instances.
Most of the data points gather along the diagonal near the origin and a small
(but more visible) number of outliers is distributed near both axes, which means
that some Graph Colouring instances were hard to solve for kco = 0 and some
were hard to solve for kco = ∞. Deeper analysis of the solver revealed that in
these cases the branching heuristic completely leads the search astray, resulting
in more guesses to solve the problem and to invest more time in propagation.

In Fig. 3, we compare results for accumulator grounding strategies to their
variants without accumulator. We observe a similar pattern as in Fig. 2: while
House is clearly able to benefit from the accumulator, effects are mixed for Graph
Colouring. Visually, outliers dominate the plot but most data points are near
the origin and below the diagonal.

Figure 4 offers a different perspective on time consumption data for two
classes of Graph Colouring instances. For each instance size (number of nodes),
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the median time consumption of selected grounding strategies on all 11 instances
is plotted. From the range of lazy grounding strategies, two representatives are
shown, comparing strict to permissive grounding of constraints.12 These are con-
trasted with Alpha’s performance when working on a fully ground input pro-
duced by gringo version 5.2.2. It appears that instances with E

V ≈ 16 and three
colours were able to benefit greatly from permissive grounding of constraints,
while performance was rather unaffected by change of grounding strategies when
five colours were used instead. For both classes we observe that having the full up-
front grounding provides good performance compared to lazy grounding, which is
in line with heuristics being fully informed. The k-unassigned grounding strategy
with permissive grounding of constraints, however, performs similarly well. We
observed that permissive grounding of constraints also reduces memory usage.
We assume this to be caused by the current lack of learned nogood forgetting,
i.e. the longer Alpha runs the more learned nogoods are kept in memory. Due
to space constraints no data on memory consumption is shown here.

Overall, we observe that lazy grounding enables a whole new range of lazy-
grounding strategies that face other challenges than previous approaches at gro-
unding. Most importantly, in lazy grounding rules and constraints grounded
earlier than necessary have a great effect on solving performance, because they
inform the heuristics about the search space. While we cannot give a definite
answer on which grounding strategy is the best, we uncovered a whole new field
of possible strategies and identified some that improve efficiency significantly.

5 Conclusions and Future Work

In this work we introduced a field of novel grounding strategies for lazy-grounding
ASP evaluation. Grounding lazily as little as possible adversely affects heuristics
and search performance, because of the limited view of the search space. Our
investigation aimed at new ways to offset this restriction while keeping the bene-
fits of lazy grounding to avoid the grounding bottleneck. The main contribution
of this paper is the introduction and formal characterization of various classes of
grounding strategies (“degrees of laziness”), like k-unassigned grounding strate-
gies and accumulator-based ones, which allow compromises between lazily gro-
unding as little as possible and the traditional grounding upfront. Experimental
results show a clear improvement over existing lazy-grounding strategies and
that permissive grounding of constraints usually improves solving performance,
while the performance improvements from other grounding strategies depend on
the problem to be solved. Permissive lazy grounding of constraints could become
the new default for Alpha and may be applied in other lazy-grounding solvers.

Our work considers grounding from a very different (lazy) perspective than
previous works on (upfront) grounding. As such, it cannot provide the conclusion
but rather the beginning of a larger investigation on the effects of lazy-grounding

12 In Graph Colouring, changing the value of kru does not show an effect on the number
of guesses needed to find an answer set. This is likely due to the encoding containing
only one non-constraint rule whose body is not fully determined by facts.
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strategies on solving performance. Future work may explore syntactic features
of answer-set programs to automatically select an efficient grounding strategy
and investigate connecting lazy grounding more closely with search heuristics.
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