Skip to main content

Endpoint-Based Thinning with Designating Safe Skeletal Points

  • Conference paper
  • First Online:
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10986))

Abstract

Thinning is an iterative object reduction: border points that satisfy some topological and geometric constraints are deleted until stability is reached. If a border point is not deleted in an iteration, conventional implementations take it into consideration again in the next step. With the help of the concepts of a 2D-simplifier point and a weak-3D-simplifier point, rechecking of some ‘survival’ points is not needed. In this work an implementation scheme is reported for sequential thinning algorithms, and it is shown that the proposed method can be twice as fast as the conventional approach in the 2D case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In: Coeurjolly, D., Montanvert, A., Chassery, J.-M. (eds.) Géométrie discrète et images numériques, pp. 187–209. Hermès Science Publications, England (2007)

    Google Scholar 

  2. Guo, Z., Hall, R.W.: Fast fully parallel thinning algorithms. CVGIP: Image Underst. 55, 317–328 (1992). https://doi.org/10.1016/1049-9660(92)90029-3

    Article  MATH  Google Scholar 

  3. Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–179. Elsevier, Amsterdam (1996)

    Chapter  Google Scholar 

  4. Kardos, P., Palágyi, K.: On topology preservation in triangular, square, and hexagonal grids. In: Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis, ISPA 2013, pp. 782–787 (2013). https://doi.org/10.1109/ISPA.2013.6703844

  5. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recognit. Artif. Intell. 9, 813–844 (1995). https://doi.org/10.1142/S0218001495000341

    Article  Google Scholar 

  6. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989). https://doi.org/10.1016/0734-189X(89)90147-3

    Article  Google Scholar 

  7. Kovalevsky, V.A.: Geometry of Locally Finite Spaces. Publishing House, Berlin (2008). https://doi.org/10.1142/S0218654308001178

    Book  Google Scholar 

  8. Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992). https://doi.org/10.1109/34.161346

    Article  Google Scholar 

  9. Malandain, G., Bertrand, G.: Fast characterization of 3D simple points. In: Proceedings of 11th IEEE International Conference on Pattern Recognition, ICPR 1992, pp. 232–235 (1992). https://doi.org/10.1109/ICPR.1992.201968

  10. Marchand-Maillet, S., Sharaiha, Y.M.: Binary Digital Image Processing: A Discrete Approach. Academic Press, New York (2000). https://doi.org/10.1117/1.1326456

    Book  MATH  Google Scholar 

  11. Németh, G., Kardos, P., Palágyi, K.: 2D parallel thinning and shrinking based on sufficient conditions for topology preservation. Acta Cybernetica 20, 125–144 (2011). https://doi.org/10.14232/actacyb.20.1.2011.10

    Article  MATH  Google Scholar 

  12. Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitative analysis of pulmonary airway tree structures. Comput. Biol. Med. 36, 974–996 (2006). https://doi.org/10.1016/j.compbiomed.2005.05.004

    Article  Google Scholar 

  13. Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms: Theoretical Foundations and Applications to Computational Imaging. LNCVB, vol. 2, pp. 165–188. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-4174-4_6

    Chapter  MATH  Google Scholar 

  14. Palágyi, K.: Equivalent sequential and parallel reductions in arbitrary binary pictures. Int. J. Pattern Recognit. Artif. Intell. 28, 1460009-1–1460009-16 (2014). https://doi.org/10.1142/S021800141460009X

    Article  Google Scholar 

  15. Palágyi, K.: Simplifier points in 2D binary images. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_1

    Chapter  Google Scholar 

  16. Suen, C.Y., Wang, P.S.P. (eds.): Thinning Methodologies for Pattern Recognition. Series in Machine Perception and Artificial Intelligence, vol. 8. World Scientific, Singapore (1994). https://doi.org/10.1142/9789812797858_0009

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the project “Integrated program for training new generation of scientists in the fields of computer science”, no EFOP-3.6.3-VEKOP-16-2017-0002. The project has been supported by the European Union and co-funded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kálmán Palágyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palágyi, K., Németh, G. (2019). Endpoint-Based Thinning with Designating Safe Skeletal Points. In: Barneva, R., Brimkov, V., Kulczycki, P., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2018. Lecture Notes in Computer Science(), vol 10986. Springer, Cham. https://doi.org/10.1007/978-3-030-20805-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20805-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20804-2

  • Online ISBN: 978-3-030-20805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics