Skip to main content

An Immersed Boundary Approach for the Numerical Analysis of Objects Represented by Oriented Point Clouds

  • Conference paper
  • First Online:
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10986))

  • 267 Accesses

Abstract

This contribution presents a method for numerical analysis of solids whose boundaries are represented by oriented point clouds. In contrast to standard finite elements that require a boundary-conforming discretization of the domain of interest, our approach works directly on the point cloud representation of the geometry. This is achieved by combining the inside-outside information that is inferred from the members of the point cloud with a high order immersed boundary technique. This allows for avoiding the challenging task of surface fitting and mesh generation, simplifying the image-based analysis pipeline drastically. We demonstrate by a numerical example how the proposed method can be applied in the context of linear elastostatic analysis of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedian, A., Parvizian, J., Düster, A., Rank, E.: The finite cell method for the J2 flow theory of plasticity. Finite Elem. Anal. Des. 69, 37–47 (2013)

    Article  Google Scholar 

  2. Almac, U., Pekmezci, I.P., Ahunbay, M.: Numerical analysis of historic structural elements using 3D point cloud data. Open Constr. Building Technol. J. 10(1), 233–245 (2016)

    Article  Google Scholar 

  3. Barsanti, S.G., Guidi, G., De Luca, L.: Segmentation of 3D models for cultural heritage structural analysis-some critical issues. ISPRS Ann. Photogrammetry Remote Sens. Spatial Inf. Sci. 4, 115 (2017)

    Article  Google Scholar 

  4. Bog, T., Zander, N., Kollmannsberger, S., Rank, E.: Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method. Comput. Mech. 61(4), 385–407 (2018)

    Article  MathSciNet  Google Scholar 

  5. Borri, A., Grazini, A.: Diagnostic analysis of the lesions and stability of Michelangelo’s David. J. Cult. Heritage 7(4), 273–285 (2006)

    Article  Google Scholar 

  6. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, London (2009)

    Book  Google Scholar 

  8. Düster, A., Rank, E., Szabó, B.: The p-version of the finite element and finite cell methods. Encyclopedia of Computational Mechanics, 2nd edn. Wiley, London (2017)

    Google Scholar 

  9. Elhaddad, M., et al.: Multi-level hp-finite cell method for embedded interface problems with application in biomechanics. Int. J. Numer. Methods Biomed. Eng. 34(4), e2951 (2018)

    Google Scholar 

  10. Elhaddad, M., Zander, N., Kollmannsberger, S., Shadavakhsh, A., Nübel, V., Rank, E.: Finite cell method: high-order structural dynamics for complex geometries. Int. J. Struct. Stab. Dyn. 15, 1540018 (2015)

    Article  MathSciNet  Google Scholar 

  11. Fries, T.P., Omerović, S.: Higher-order accurate integration of implicit geometries. Int. J. Numer. Methods Eng. 106(5), 323–371 (2016)

    Article  MathSciNet  Google Scholar 

  12. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intelli. 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  13. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola (2000)

    MATH  Google Scholar 

  14. Joulaian, M., Hubrich, S., Düster, A.: Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput. Mech. 57(6), 979–999 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kudela, L., Frischmann, F., Yossef, O.E., Kollmannsberger, S., Yosibash, Z., Rank, E.: Image-based mesh generation of tubular geometries under circular motion in refractive environments. Mach. Vis. Appl. 29, 719–733 (2018)

    Article  Google Scholar 

  16. Kudela, L., Zander, N., Kollmannsberger, S., Rank, E.: Smart octrees: accurately integrating discontinuous functions in 3D. Comput. Methods Appl. Mech. Eng. 306, 406–426 (2016)

    Article  MathSciNet  Google Scholar 

  17. Parvizian, J., Düster, A., Rank, E.: Finite cell method. Comput. Mech. 41(1), 121–133 (2007)

    Article  MathSciNet  Google Scholar 

  18. Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  19. de Prenter, F., Verhoosel, C., van Zwieten, G., van Brummelen, E.: Condition number analysis and preconditioning of the finite cell method. Comput. Methods Appl. Mech. Eng. 316, 297–327 (2017)

    Article  MathSciNet  Google Scholar 

  20. Riveiro, B., Caamaño, J., Arias, P., Sanz, E.: Photogrammetric 3D modelling and mechanical analysis of masonry arches: an approach based on a discontinuous model of voussoirs. Autom. Constr. 20(4), 380–388 (2011)

    Article  Google Scholar 

  21. Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., Rank, E.: Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int. J. Numer. Methods Eng. 95(10), 811–846 (2013)

    Article  MathSciNet  Google Scholar 

  22. Ruess, M., Tal, D., Trabelsi, N., Yosibash, Z., Rank, E.: The finite cell method for bone simulations: verification and validation. Biomech. Model. Mechanobiol. 11(3–4), 425–437 (2012)

    Article  Google Scholar 

  23. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011

    Google Scholar 

  24. Schillinger, D., Düster, A., Rank, E.: The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int. J. Numer. Methods Eng. 89(9), 1171–1202 (2012)

    Article  MathSciNet  Google Scholar 

  25. Schillinger, D., Ruess, M., Zander, N., Bazilevs, Y., Düster, A., Rank, E.: Small and large deformation analysis with the p-and B-spline versions of the finite cell method. Comput. Mech. 50(4), 445–478 (2012)

    Article  MathSciNet  Google Scholar 

  26. Szabó, B., Düster, A., Rank, E.: The p-version of the finite element method. Encyclopedia of Computational Mechanics. Wiley, London (2004)

    Google Scholar 

  27. Wassermann, B., Kollmannsberger, S., Bog, T., Rank, E.: From geometric design to numerical analysis: a direct approach using the finite cell method on constructive solid geometry. Comput. Math. Appl. 74(7), 1703–1726 (2017)

    Article  MathSciNet  Google Scholar 

  28. Wu, C., et al.: VisualSFM: a visual structure from motion system (2011)

    Google Scholar 

  29. Xu, F., Schillinger, D., Kamensky, D., Varduhn, V., Wang, C., Hsu, M.C.: The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput. Fluids 141, 135–154 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kudela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kudela, L., Kollmannsberger, S., Rank, E. (2019). An Immersed Boundary Approach for the Numerical Analysis of Objects Represented by Oriented Point Clouds. In: Barneva, R., Brimkov, V., Kulczycki, P., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2018. Lecture Notes in Computer Science(), vol 10986. Springer, Cham. https://doi.org/10.1007/978-3-030-20805-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20805-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20804-2

  • Online ISBN: 978-3-030-20805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics