Skip to main content

Marker Based Segmentation Revisited

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11564))

  • 778 Accesses

Abstract

Watershed segmentation generally produces a severe oversegmentation. Marker based segmentation creates watershed partitions in which each region contains a marker, avoiding the oversegmentation. We obtain a coherent picture of marker based segmentation by modelling it on node or edge weighted graphs. Links are established between the methods published in the literature and some misconceptions are corrected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: Proceedings of the International Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation (1979)

    Google Scholar 

  2. Gondran, M.: Path algebra and algorithms. In: Roy, B. (ed.) Combinatorial Programming: Methods and Applications. ASIC, vol. 19, pp. 137–148. Springer, Dordrecht (1975). https://doi.org/10.1007/978-94-011-7557-9_6

    Chapter  Google Scholar 

  3. Hu, T.C.: The maximum capacity route problem. Oper. Res. 9(6), 898–900 (1961)

    Article  Google Scholar 

  4. Lantuéjoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. J. Microsc. 121, 39 (1981)

    Article  Google Scholar 

  5. Meyer, F.: Un algorithme optimal de ligne de partage des eaux. In: Proceedings \(8^{ {\grave{e}me}}\) Congrès AFCET, Lyon-Villeurbanne, pp. 847–857 (1991)

    Google Scholar 

  6. Meyer, F.: Minimum spanning forests for morphological segmentation. In: Serra, J., Soille, P. (eds.) Mathematical Morphology and Its Applications to Image Processing. CIVI, vol. 2, pp. 77–84. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-011-1040-2_11

    Chapter  Google Scholar 

  7. Meyer, F.: Flooding and segmentation. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. CIVI, vol. 18, pp. 189–198. Springer, Boston (2002). https://doi.org/10.1007/0-306-47025-X_21

    Chapter  Google Scholar 

  8. Meyer, F.: Flooding edge or node weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 341–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_29

    Chapter  Google Scholar 

  9. Meyer, F.: Watersheds on weighted graphs. Pattern Recognit. Lett. 47, 72–79 (2014)

    Article  Google Scholar 

  10. Meyer, F.: Topographical Tools for Filtering and Segmentation 1: Watersheds on Node- or Edge-Weighted Graphs. ISTE/Wiley, London/Hoboken (2019)

    Book  Google Scholar 

  11. Meyer, F.: Topographical Tools for Filtering and Segmentation 2: Floodings and Marker-Based Segmentation on Node- or Edge-Weighted Graphs. ISTE/Wiley, Etats-Unis/Newark (2019)

    Book  Google Scholar 

  12. Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1(1), 21–46 (1990)

    Article  Google Scholar 

  13. Moore, E.F.: The shortest path through a maze. In: Proceedings of the International Symposium on Theory of Switching, vol. 30, pp. 285–292 (1957)

    Google Scholar 

  14. Vincent, L., Soille, P.: Watersheds in digitalspaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1, 583 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernand Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer, F. (2019). Marker Based Segmentation Revisited. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics