Skip to main content

Fast Marching Based Superpixels Generation

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11564))

Abstract

In this article, we present a fast-marching based algorithm for generating superpixel (FMS) partitions of images. The idea behind the algorithm is to draw an analogy between waves propagating in an heterogeneous medium and regions growing on an image at a rate depending on the local color and texture. The FMS algorithm is evaluated on the Berkeley Segmentation Dataset 500. It yields results in term of boundary adherence that are comparable to the ones obtained with state of the art algorithms including SLIC or ERGC, while improving on these algorithms in terms of compactness and density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zitnick, C.L., Kang, S.B.: Stereo for image-based rendering using image over-segmentation. Int. J. Comput. Vis. 75(1), 49–65 (2007)

    Article  Google Scholar 

  2. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 670–677. IEEE (2009)

    Google Scholar 

  3. Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst. (2017)

    Google Scholar 

  4. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  5. Machairas, V., Decenciere, E., Walter, T.: Waterpixels: superpixels based on the watershed transformation. In: 2014 IEEE International Conference on Image Processing (ICIP), October, pp. 4343–4347 (2014)

    Google Scholar 

  6. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  7. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43(1), 7–27 (2001)

    Article  Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  10. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 6, 583–598 (1991)

    Article  Google Scholar 

  11. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Opt. Eng. N.Y. Marcel Dekker Inc. 34, 433–433 (1992)

    Google Scholar 

  12. Figliuzzi, B., Chang, K., Faessel, M.: Hierarchical segmentation based upon multi-resolution approximations and the watershed transform. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 185–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_15

    Chapter  MATH  Google Scholar 

  13. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: TurboPixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  14. Achanta, R., Susstrunk, S.: Superpixels and polygons using simple non-iterative clustering. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, July, pp. 4895–4904. IEEE (2017)

    Google Scholar 

  15. Xiao, X., Gong, Y., Zhou, Y.: Adaptive superpixel segmentation aggregating local contour and texture features. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March, pp. 1902–1906 (2017)

    Google Scholar 

  16. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June, pp. 1356–1363 (2015)

    Google Scholar 

  17. Giraud, R., Ta, V.-T., Papadakis, N., Berthoumieu, Y.: Texture-aware superpixel segmentation. arXiv:1901.11111 [cs], January 2019

  18. Buyssens, P., Toutain, M., Elmoataz, A., Lézoray, O.: Eikonal-based vertices growing and iterative seeding for efficient graph-based segmentation. In: IEEE International Conference on Image Processing (ICIP 2014), Paris, France, October, p. 5 (2014)

    Google Scholar 

  19. Buyssens, P., Gardin, I., Ruan, S., Elmoataz, A.: Eikonal-based region growing for efficient clustering. Image Vis. Comput. 32(12), 1045–1054 (2014)

    Article  Google Scholar 

  20. Buyssens, P., Gardin, I., Ruan, S.: Eikonal based region growing for superpixels generation: application to semi-supervised real time organ segmentation in CT images. IRBM 35(1), 20–26 (2014)

    Article  Google Scholar 

  21. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  Google Scholar 

  22. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  Google Scholar 

  23. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  24. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  25. Neubert, P., Protzel, P.: Superpixel benchmark and comparison. In: Forum Bildverarbeitung 2010, pp. 205–218 (2012)

    Google Scholar 

  26. Schick, A., Fischer, M., Stiefelhagen, R.: Measuring and evaluating the compactness of superpixels. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), November, pp. 930–934 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Figliuzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, K., Figliuzzi, B. (2019). Fast Marching Based Superpixels Generation. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics