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Abstract. We propose to employ scale spaces of mathematical mor-
phology to hierarchically simplify fracture surfaces of complementarity
fitting archaeological fragments. This representation preserves comple-
mentarity and is insensitive to different kinds of abrasion affecting the
exact fitting of the original fragments. We present a pipeline for morpho-
logically simplifying fracture surfaces, based on their Lipschitz nature;
its core is a new embedding of fracture surfaces to simultaneously com-
pute both closing and opening morphological operations, using distance
transforms.
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1 Introduction

The GRAVITATE H2020 project aims at providing archaeologists with the
virtual tools to analyse digital artefacts, distributed across several collections
(https://gravitate-project.eu/). The artefacts are digitally scanned by stan-
dard scanning techniques in the form of 3D meshes, capturing the geometrical
properties of each object and some of its photometric proprieties. Reassembly of
broken artefacts is one of the core objectives of the project.

The test case is on terracotta, which does not deform; but typical fragments
are lacking material through abrasion and chipping. Each fragment undergoes
a preliminary preprocessing step [5] which partitions its surface into significant
sub-parts called ‘facets’. Each facet is characterized by its own geometrical prop-
erties of roughness of its surface and sharpness of its boundary, which in turn
guides its categorization as either belonging to the fracture region or outside
skin region of the fragment.

Our contribution to the project focuses on structuring the pair-wise align-
ment of promising fragments nominated for fitting by other selection modules.
The computational approach is based purely on the geometrical properties of
the fracture facets, ignoring other clues (such as possible continuity of decora-
tive patterns).

? This research was funded by the GRAVITATE project under EU2020-
REFLECTIVE-7-2014 Research and Innovation Action, grant no. 665155.
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Fig. 1. Morphological simplification pipeline for archaeological fracture facets.

Optimal pair-wise alignment of potentially counter-fitting fragments is com-
putationally expensive. We therefore take a hierarchical approach, considering
the fragments in increasing resolution from simplified to detailed.

The common way of simplifying shapes represented as meshes is by various
forms of linear filtering of their vertices; letting them move with a differentiable
flow (such as based on the Poisson equation) to produce a smoother model
[11]. Structure-aware mesh decimation to preserve the structure of the mesh by
representing it as a set of pre-computed canonical proxies has been also studied
by [16]. Such simplifications are strongly related to characterizing a surface by
differential geometric features, such as those computed by some means of discrete
differential geometry [12]. Indeed most methods to reassemble broken objects
[9,19,15,7,14] are all based on such features. However, a small chip, resulting
in a missing part of an object, will affect such differential measures in a linear
fashion: the deeper the missing bit, the stronger the simplified shape is affected.
This is undesirable: the actual match between part and counterpart is simply
lacking some local evidence of a more binary nature. The effect of this gap should
not depend on the depth of the hole (a gap with the same surface outline but
twice as deep is not twice as bad); so our representation method should not be
too sensitive to this either. For the same reason, applying ICP (Iterative Closest
Point) algorithm to find a matching counterpart based on squared errors is not
appropriate; some extensions of ICP that include distance transforms [6] are
more in line of what we might employ.

In our hierarchical approach, we need a representation where a coarser, sim-
plified version of the fracture surface maintains its potential fit with a coarser,
simplified version of the counterpart, under abrasion-type noise. Mathematical
morphology with its opening and closing scale spaces, of increasing size, is the
natural choice for just that kind of representation. Such scale spaces have been
studied in [10,1,2], and it has been demonstrated that they simplify the shape,
when measured in terms of certain descriptive features such as local maxima
[10], or zero-crossings of the curvature [4]. But our intended use for alignment
and complementarity checking appears to be new.

In this paper, we therefore hone standard Mathematical Morphology (MM)
to this novel application. First, we define scale-based complementarity of objects
(rather than one object and its background). Then, we define morphological op-
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erations working only on the fracture region of the fragments. We implement
this ‘Boundary Morphology’ by taking advantage of the Lipschitz nature of the
individual fracture facets. Our extrusion method uses a single distance transform
to simultaneously produce both scaled dilations and scaled erosions of a fracture
facet (as in Figure 1), leading to a simplified representation at every scale. We
briefly discuss how the fracture Lipschitz property also naturally gives quanti-
tative bounds on the detectable complementarity and collision-free alignment at
each scale of our representation, even in the presence of abrasion.

2 Complementarity Preserving Scale Space

Consider a fracture between two fragments X and Y in perfect alignment (or, if
you prefer, consider a newly developed crack in an object). Within a well-chosen
mask M (such as the part of space the object occupies), the two fragments X
and Y are almost complementary in the usual MM sense, with the fracture area
being ambiguous (does it belong to X or Y ?). In an implementation such an
infinitely thin layer is not going to make a difference, so we arbitrarily choose
X to be a closed set and Y to be open. Then the M -restricted parts of X and
Y , XM (= X ∩M) and YM (= Y ∩M) are two relatively complementary sets
(Xc

M = YM ). The properties of exact complementarity (no overlap, no gaps) can
then be algebraically formulated as:

No Overlap⇐⇒ Non-Intersection: XM ∩ YM = ∅ (1)

No Gaps⇐⇒ Completeness: XM ∪ YM = M (2)

In archaeology, we do not acquire the fragments to be in alignment, or in perfect
condition. We choose MM scale spaces to process the fracture region of each of
the fragments separately, producing a simplified representation for each fracture
facet at a range of scales ρ. Morphological scale spaces are well suited to this,
since they can simplify objects while closely maintaining local complementarity,
even when objects are slightly damaged (as we will discuss in Section 4).

Performing erosions or dilations would change the objects considerably, so we
prefer to use openings and closings to process the fragments (even though much
essential structure is already contained in eroded and dilated versions). Because
of the arbitrary orientation of presented objects, and an assumed isotropy of
fracturing, our morphological scale space is built using structuring elements that
are balls of radius ρ.

At a scale ρ, the opened version γρ(X) will be complementary (in the above
sense) to the closed version φρ(Y ), and vice versa. Since a closing φρ(X) simplifies
the local geometry of the fracture at valleys, the complementarity with γρ(Y )
becomes less specific in those areas (one can easily construct non-complementary
counterparts Y ′ with the same opening γρ(Y

′) = γρ(Y ), that do not fit the
original X). To maintain specificity of peaks and valleys of the common fracture
surface, we must therefore compute both γρ(X) and φρ(X) for each fragment X.
Since both opening and closing are increasing, coarser levels of the scale space
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are guaranteed to contain less detail, thus enabling the hierarchical approach (as
well as being a justification for calling the process a ‘simplification’).

In a schema, if R > ρ, we have the following complementarity and contain-
ment relationships:

γR(XM ) ⊆ γρ(XM ) ⊆ XM ⊆ φρ(XM ) ⊆ φR(XM )

m c m c m c m c m c
φR(YM ) ⊇ φρ(YM ) ⊇ YM ⊇ γρ(YM ) ⊇ γR(YM )

(3)

Here c refers to complementarity within a well-chosen mask M containing the
common fracture of X and Y . This ‘well-chosen’ actually hides some essential
details, since masking does not commute with morphology (e.g., φρ(XM ) 6=
(φρ(X))M ). It is not hard to show that when originally there was exact com-
plementarity between X and Y within a mask M , then in the scale space exact
complementarity still holds between φρ(X) and γρ(Y ), or between γρ(X) and
φρ(Y ), but is only guaranteed within a doubly eroded mask ε2ρ(M).

3 Fracture Morphology

Consider a broken vase producing thin sherds as fragments. Volumetric morpho-
logical simplification of the fragments would be limited in scale by their thick-
ness: an opening by a ball with a radius ρ of more than half this thickness would
results in empty sets, which would only be complementary to their counterpart
in a trivial way. Since the fractures themselves have informative morphological
structure transcending this scale, we design in this section a way to focus the
morphological processing purely on the fracture surface (rather than on fragment
volumes). This should suffice for our puzzle, since whether two broken fragments
can be refit locally depends on the complementary shape of their fractures only.

3.1 Boundary Morphology

In Section 2, we had masked objects XM and YM , with complementarity in M
(and a slight issue of how we treat their common boundary fracture F ). Now
consider only one of them, no longer in contact, and investigate how to compute
its openings and closings. We are only interested in the effect on F , not on the
remainder of the object volume within M .

F is a boundary, not a volume, and the classical MM does not apply immedi-
ately. We first define what we mean by applying mathematical morphology to a
boundary. Let us call it ‘Boundary Morphology’ and denote its operations by an
over-bar. Consider a general object A of which we take the boundary ∂A (and
ignore the masking effects for the moment). As we have seen, for true comple-
mentarity some objects may be open sets, others closed sets. We need to take
the boundary of either, so we will always close the set and then apply the usual
boundary operator ∂ to define our boundary operator (which we denote by ∂ ):

∂ A = ∂A (4)
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Thus ∂ A returns the set of points of A that have neighbours in A
c
.

In order to distinguish erosion and dilation, we need to make the boundary
oriented, for instance by denoting the outward pointing normal at each location.
Then this orientation changes to its opposite if we consider the boundary of
the complement. To more easily denote this, write the complement as the prefix
operator c . We then have:

c ∂ A ≡ ∂ cA (= ∂ Ac), (5)

which defines the complementation c of the boundary.
We define what it means to dilate and erode a boundary, defining operators

δ and ε in terms of classical volumetric operators by:

δ ∂ A ≡ ∂ δA and ε ∂ A ≡ ∂ εA. (6)

It now follows that we can perform an erosion as a dilation on the complemented
(oppositely oriented) boundary:

ε ∂ A = ∂ εA = ∂ c δcA = c ∂ δcA = c δ ∂ cA = c δ c ∂ A. (7)

and accordingly,

ε = c δ c and δ = c ε c . (8)

In fact, this is merely the duality between dilation and erosion, extended to their
boundary versions (with c playing the role of complementation). So once we can
dilate a boundary, we can use that both to produce the dilation δ and the erosion
ε (by doing dilation on c ∂ A, the oppositely oriented boundary):

This can be easily extended to boundary closing φ and opening γ defined
as:

φ∂ A ≡ ε δ ∂ A and γ ∂ A ≡ δ ε ∂ A, (9)

for it follows from Eqs. (7) and (8) that we can also perform an opening as a
closing on the complemented boundary:

γ ∂ A = δ ε ∂ A = c ε c ε ∂ A = c ε δ c ∂ A = c φ c ∂ A. (10)

and accordingly,

γ = c φ c and φ = c γ c . (11)

Now, the schema of eq. (3) can be rewritten to describe the complementarity
of two exactly fitting fracture boundaries (at scales R and ρ with R > ρ), as
follows:

γR∂ (XM ) ⊆ γρ∂ (XM ) ⊆ ∂ (XM ) ⊆ φρ∂ (XM ) ⊆ φR∂ (XM )

m c m c m c m c m c
φR∂ (YM ) ⊇ φρ∂ (YM ) ⊇ ∂ (YM ) ⊇ γρ∂ (YM ) ⊇ γR∂ (YM )

(12)

where c (complementarity) is taken within M .
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Fig. 2. (a) Fracture surface with blue local normal directions. (b) Mapping of the
normals to a unit sphere of directions. (c) The minimum bounding sphere (in green)
determines the minimum bounding cone on the unit sphere of directions (in cyan).

3.2 Lipschitz Condition

Terracotta is uniform and brittle. It fractures rather simply such that there
is at least one 3D direction from which the whole fracture facet is completely
visible, i.e. a ray in that direction emanating from each point of the fracture will
not encounter any other point of that local fracture facet. Accordingly, a given
fracture facet can be represented as a function (a Monge patch); noting that
another fracture facet of the same fragment may require a different visibility
direction to be seen as a function. The visibility assumption can be efficiently
characterized in terms of the ‘Lipschitz condition’ which frequently occurs in
quantitative mathematical morphology [17].

For any pair of points on the graph of a slope-limited Lipschitz function with
slope s, the absolute value of the slope of the line connecting them is always
less than s (i.e., the Lipschitz constant). As a consequence, there exists a double
cone whose vertex can be moved along any such Lipschitz-continuous function,
so that it always remains entirely visible from the principal direction of the cone
while the rest of the function is completely outside the cone. For a local fracture
to meet the visibility condition, it should meet the Lipschitz condition over its
entire domain.

To compute the Lipschitz slope s, we first collect the local normal vectors of
the fracture facet on a unit sphere of directions, and then fit the largest possible
cone inside this set (see Figure 2). The axis of this cone we call the cone direction,
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and the opening angle we call the cone angle. Let us use the cone direction as
the principal direction to align the fracture facet, so that it can be described as
a Lipschitz function. This fracture function is then bounded in Lipschitz slope
s, which is the cotangent of the cone angle.

In practice, the Lipschitz condition appears to intrinsically hold for each
of our terracotta fractures. Even if it does not hold, we can always artificially
separate the fracture regions by the Faceting preprocessing procedure [5] that
delivers the piecewise Lipschitz facets of the fracture region.

3.3 Extrusion

Fig. 3. Extrusion of a fracture facet ∂ F along the Lipschitz principal direction, gener-
ating a volume (cylinder) with ∂ F as its top red surface, and the oppositely oriented
c ∂ F as its bottom aquamarine surface.

The fracture surfaces, extracted using the Faceting preprocessing operation
[5], are locally Lipschitz. The corresponding Lipschitz principal direction acts
as the ‘average breakage direction’ for the whole fracture facet. Therefore, we
can generate a thickened fracture volume by extruding the facet along such
visibility direction without self-intersection. Such an extrusion effect is equivalent
to making two copies of the fracture surface bounded by a generalized cylinder:
one with original (non-inverted) normals ∂ F and one with inverted normals
c ∂ F (see Figure 3). The outward propagation of the copy with non-inverted
normals is the fracture surface dilation (δρ), while the propagation of the one
with inverted normals is the erosion (ερ), by eq. (8). By a subsequent inward
propagation of the resulting expanded surfaces, by the same amount ρ, one then
acquires the closing (φρ) and the opening (γρ) of the fracture.

Focusing our morphological simplification on the extruded fracture volume
has the following advantages:

(a) Extending the functional morphological scale (ball radius ρ) beyond the
minimum thickness of the archaeological object by only needing to do closing.

(b) Permitting simultaneous propagation of the fracture surface to both sides,
thus allowing the production of MM opened and closed surfaces in one go.
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(c) Avoiding the dilation of elements outside the mask (which could affect the
outcome within the mask) by having the extruded surface surrounded by
sufficient empty space completely isolated from outside influences.

(d) Avoiding needless processing of the non-fracture regions of the object.

3.4 Distance-Transform based MM implementation

Fig. 4. Distance field computation, shown two cross sections

We obtain our data as 3D meshes, so it would be natural to apply the opera-
tions of boundary morphology to fracture facets represented directly as extruded
3D meshes. However, applying morphological operations directly on a mesh rep-
resentation is notoriously hard (the dilation and erosion operations lead to many
additional vertices as the mesh faces start intersecting [8], and the ball struc-
turing elements add many more). At this point of our narrative, it would seem
that Point Morphology [3] is also a good candidate; we will see in Section 4 that
we need more than just the simplified surfaces by themselves to determine our
morphological features.

An alternative implementation of morphology, especially when done in a scale
space context, is by means of the isosurfaces of distance functions. Since we do
want to perform our operations at different scales of a ball-shaped structuring
element, this is especially attractive. Two basic approaches exist: distance trans-
form considered as a numerical level set in a space of 1 more dimension [18] or
classic distance transform on a 3D grid. We adopted the latter approach which:
a) suffices as a straightforward demonstration of the validity of our concepts
and b) enables us to keep track of the original fracture points propagation in
the distance field and their contribution to the generated MM surfaces through
what we call the provenance map.
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Our implementation relies on distance transforms in a volumetric represen-
tation [20], oriented with the Lipschitz principal direction along its z-direction.
We convert the extruded mesh to binary representation by embedding the frac-
ture surface in a 3D voxelized grid of a well chosen resolution, of step size g. We
derived that the maximum outward and inward displacement that could take
place due to discretization effects is no more than

√
3g/2. This implies that dis-

tances (and hence MM surfaces) are affected by no more than this amount. The
generated grid is padded with an empty region sufficient to contain the maxi-
mally dilated versions of the fracture surfaces. For generating our distance field,
the method proposed by [13] is employed, which calculates the euclidean dis-
tance transform in linear time on a binary voxelized representation of the object
as shown in Figure 4. The closing of the fracture volume with a ball of radius
ρ (closing is all we need by virtue of eq. (11)) is performed by first extracting
the outward level set at distance ρ, then re-computing the distance field of the
background and extracting the inward level set at distance ρ.

3.5 MM Surfaces

Fig. 5. Closing and opening scale spaces simplifying a fracture with increasing scale ρ.

Intuitively, morphologically closing the entire extruded volume is equivalent
to rolling a ball on the fracture surface from both sides. The upper rolling (con-
strained by the fracture peaks) is equivalent to the closing effect, while the lower
rolling (constrained by the fracture valleys) is equivalent to the desired opening
effect.

Figure 5 shows the closed and opened simplified MM surfaces at 6 different
scales of a given fracture surface with 5.8K vertices and 11K faces. The grid
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resolution is g = 0.2 mm of size 119 × 323 × 29 and is padded with 151 voxels
from each side to permit the outward propagation of the fracture surface up to
30 mm without losing information, thus producing a grid of size 421×625×331.

The fracture Lipschitz computations together with the extrusion and em-
bedding take less than 2 seconds for a mesh of size 10K. The distance field
computation time is more affected by the resolution of the grid: computing the
distance transform for 500× 500× 500 grid takes at most 1 minute. Extracting
the closed and opened MM surfaces takes less than 50 seconds for the same grid
size. In the GRAVITATE system, such times are considered acceptable. We per-
formed our experiments on an Intel(R) Xeon(R) CPU 2.9GHZ × 8 computer
with 256GB RAM.

4 Inexact Complementarity

In practice, there are many aspects to our data that prevents complementarity
from being exact. However, using the Lipschitz condition for fracture surface
characterization together with MM for hierarchical fracture simplification en-
ables us to establish the bounds on the amount of inexactness. In this section,
we briefly discuss the sources causing inexactness and and how to treat their
associated deviations.

– Abrasion. When a fractal surface as brittle as terracotta is rubbed, this
will tend to take off the sharp local peaks without affecting the valleys. We
propose that a reasonable model of such effect is that the object undergoes
a morphological opening γα of a small size α.
Assuming this, the opening scale space will be unaffected for ρ > α, since
γρ(γα(X)) = γρ(X) for ρ ≥ α. However, the closing is affected by the
abrasion. Therefore, exact complementarity of γρ(X

′) and φρ(Y
′) of eq. (3)

schema no longer holds for the abraded version X ′ = γα(X) and Y ′ = γα(Y ),
even if it did for the original X and Y . Nevertheless, the difference is bounded
for the Lipschitz functions we are considering as the fracture facets. A simple
sketch of a local sphere of radius α capped by a Lipschitz cone of slope s
shows that the maximal deviation of a possible original surface and its α-
opening is (

√
1 + s2−1) ' 1

2αs
2. Since X ′ does not differ by more than 1

2αs
2

from X, also φρ(X
′) will not differ from φρ(X) by more than this amount.

With that in mind, we can still test the possibility of complementarity, to
within this bound, of the opened and closed abraded fractures.

– Fracture Adjacency Effects. Each facet is delineated by an outer border
(contour). That border defines the complementarity zone of its processed
MM surfaces. In practice, there are two different kinds of facet borders:
fracture-skin border and fracture-fracture border. The former is the contour’s
segment that is adjacent to a facet which belongs to the exterior skin of
the original object. By contrast, a fracture-fracture border occurs when the
original fragment is further broken into sub-fragments, causing the adjacency
of more than one fracture facet.
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If the facet has only fracture-skin borders, then complementarity with its
counterpart still holds over the entire surfaces of its simplified MM versions
across all scales. For facets with fracture-fracture borders, one should expect
complementarity to hold within regions away from the border. But there
is a scale-dependent zone adjacent to the fracture-fracture borders where
the MM surfaces are no longer guaranteed to be complementary to those
of its counterpart. In that zone, the representation of either part may have
been affected by the secondary breaking. The bounds we can obtain on this
zone under the general assumptions we made (such as Lipschitz) are weak.
We have found that we can much more specifically delineate it through
analysing the provenance map of the distance transform. Our current work
is on efficient representation of the simplified scale space surfaces, taking this
effect into account.

– Misalignment. Complementarity only exists in perfect alignment of the
two counterparts; any offset in translation or orientation will destroy it. But
this effect is not as boolean as Eqs. (1) and (2) makes it appear: the com-
plementarity is quantifiable by means of the MM scale spaces. The distance
transform method of producing the openings and closings at different scales
can be employed to guide the alignment, from coarser to finer scales, with
the separation between one surface’s opening and closing at each scale giving
an indication of reasonable bounds on the fine alignment at that scale.

5 Conclusion and Future Work

We have presented morphological simplification of the fracture facets of archae-
ological fragments based on their scanned 3D mesh representation, as a prepara-
tory phase for optimal pair-wise alignment. This is a problem that lends itself
very well to treatment by mathematical morphology, since that framework pro-
vides complementarity-preserving simplification of shapes in a manner that is
insensitive to the kind of missing information and abrasion that we expect in the
archaeological fragments. We showed how to perform morphology on boundaries
in Section 3.1. The assumption that each fracture facet is a Lipschitz function
allowed us to set up the extrusion method in Section 3.3. The duplicate inter-
nal and external copies of the local fracture facet surface enable computing the
opening and closing scale spaces simultaneously, in a volumetric representation
in Section 3.5.

The resulting surfaces are simpler, but still contain the essentials of com-
plementarity. We are currently investigating the compact characterization of
the MM scale space surfaces by means of characteristic scale space medial axis
points, computed directly from the distance transform and its provenance map
(specifying which points are influential at each location). This should allow the
use of standard registration algorithms on those morphologically relevant fea-
ture points only. Moreover, we plan to use the provenance map of the distance
transform to automatically control the reliability of those representations when
parts of the original fracture facet are missing.
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