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Abstract. In this paper, we present Skeleton Transformer Networks
(SkeletonNet), an end-to-end framework that can predict not only 3D
joint positions but also 3D angular pose (bone rotations) of a human
skeleton from a single color image. This in turn allows us to generate
skinned mesh animations. Here, we propose a two-step regression ap-
proach. The first step regresses bone rotations in order to obtain an ini-
tial solution by considering skeleton structure. The second step performs
refinement based on heatmap regressor using a 3D pose representation
called cross heatmap which stacks heatmaps of xy and zy coordinates.
By training the network using the proposed 3D human pose dataset
that is comprised of images annotated with 3D skeletal angular poses,
we showed that SkeletonNet can predict a full 3D human pose (joint
positions and bone rotations) from a single image in-the-wild.
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1 Introduction

Estimating 3D human pose from a single image is an important yet very chal-
lenging problem in computer vision, where applications range from surveillance
to robotics. Recent work has shown that convolutional neural networks (Con-
vNets) can detect 2D joint positions accurately. The key to achieving accurate
predictions is to represent 2D joint locations as heatmaps and iteratively refines
them gradually by incorporating context information [16,3]–early approaches [25]
on the other hand directly perform regression of the 2D joint coordinates using
ConvNets, which is a difficult problem that needs to model a highly-nonlinear
mapping from an input image to real values. Recent techniques, such as Open-
Pose [5], can robustly detect 2D joints of multiple people in an image.

In contrast to its 2D counterpart, the progress of 3D human pose detec-
tion has been relatively slow. The main challenges regarding to 3D human pose
estimation is as follows:
3D pose representation To predict 3D joint locations using ConvNets, 3D
pose representation used is critical, which affects prediction accuracy. Previous
approaches have shown that regression of a 3D pose using heatmaps (e.g., volu-
metric [18] and 2D heatmaps + depth [28]) leads to accurate 3D joint predictions.
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On the other hand, regression of joint angles using ConvNets [29,10] has not been
successful so far in contributing to accurate 3D joint localizations, because they
are difficult to learn with ConvNets due to their high non-linearity. From the
application point of view, such as computer animation and biomechanics, it is
desirable to predict not only 3D joint locations but also angular pose of skeleton,
e.g., joint angles or segment rotations.

Data scarcity Compare to 2D human pose dataset, 3D human pose dataset
is smaller in size. This is because obtaining a 3D human pose dataset where the
images paired with 3D joint annotations requires time and effort. In particular,
annotations of 3D angular skeletal poses are difficult to obtain. One common
way to achieve this is to use a motion capture (MoCap) system and RGB video
cameras at the same time. However, such dataset are usually limited to a small
variety of subjects—for example, Human 3.6M dataset [9], which is the most
common dataset for 3D human pose, is limited to around 10 subjects. Conse-
quently, it is difficult to learn sufficient visual features from 3D pose dataset
solely to localize 2D/3D joints accurately.

Skeletal structure has been incorporated into 3D human pose estimation as
a form of constraints or subspace. In biomechanics and robotics, forward and
inverse kinematics have been well-studied and are used to generate human pose
from MoCap by controlling joint angles of a skeleton. Previous approaches in
the computer vision field estimated 3D human pose from 2D key points using a
statistical model and enforcing constraints such as segment length [21], joint limit
[1] and symmetry. In computer graphics, human skeletal pose is often represented
using linear or affine transformation matrices, as can be seen for example in linear
blend skinning for character animation.

In this paper, we propose skeleton transformer networks (SkeletonNet) for 3D
human pose detection which respects skeletal structure while attaining 3D joint
prediction accuracy. SkeletonNet combines and benefits from the two paradigms,
skeleton and heatmap representations. SkeletonNet first regresses bone rotations
to an input image in order to have an initial solution which is not precisely ac-
curate but considers skeletal structure. Starting from this initial solution, the
second step refines it using ConvNet heamap regressor. This strategy allows us
to recover reasonably accurate predictions of full 3D human poses (joint po-
sitions and bone rotations) from a single in-the-wild image. To contribute to
solving the data scarcity problem, we also construct a dataset where 3D angular
skeletal poses are annotated on in-the-wild images, based on a human-validation
approach. By fusing the proposed dataset and Mocap dataset captured under a
controlled environment (Human3.6M), SkeletonNet can predict a full 3D pose
(joint positions and bone rotation) from a single image in-the-wild. In addition,
experimental results showed that SkeletonNet outperforms previous approaches
based on joint angles [10,29] in terms of MPJPE joint position accuracy.

The contributions of this work is summarized as follows:

– We propose an end-to-end ConvNet framework for predicting a full 3D hu-
man pose (joint positions and bone rotations).
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– We propose a bone rotation regressor which predicts 3D human pose using
3 × 3 transformation matrices. To make arbitrarily linear transformations
into rotations, we propose a Gram Schmidt orthogonalization layer. This
combination is the key to learning angular pose accurately with using Con-
vNets.

– We propose a 3D human pose representation called cross heatmap for accu-
rate 3D joint detection. This representation combines two heat maps, one for
representing 2D joints in image space (xy space) and the other for zy space.
The benefit of this representation is that it is more efficient than the vol-
umetric heatmaps [18], while accurately predicting 3D joint positions when
trained using Mocap-video dataset (Human 3.6M) and in-the wild dataset
(MPII with 3D pose annotations).

– We built a 3D human pose dataset in-the-wild which includes annotations
of 3D bone rotations.

2 Related work

Estimating 2D joint positions using ConvNets Recent work has shown
that the detection of 2D joint positions can be done very accurately using convo-
lutional neural networks (ConvNets). Toshev et al. [25] first proposed a method
based on ConvNets for detecting human pose i.e., 2D key points representing
joint locations from a single image. Tompson et al. instead represented joint loca-
tions in images using 2D heat maps so that it can avoid complicated a nonlinear
mapping that goes from an image to xy pixel coordinates. The recent techniques,
such as the stacked hourglass network [16] and its variants [27,7,6], accurately
predict 2D joint positions by iteratively refining 2D heatmaps.
Predicting 3D joint positions The early approaches predicts 3D joint po-
sitions from key points [20]. These approaches assume that the almost perfect
2D key points are already extracted from an image. Li et al. [13] first used
ConvNets to directly regress 3D human joints with an image. There are two
main reasons for the improvements on accuracy of 3D human pose detection.
First, the recent approach combines multiple data sources to increase the 3D
pose dataset [15,28]. Second, the recent techniques make use of more natural 3D
joint representation. For example, Pavlakos et al. [18] uses a volumetric heatmap
representation, which can avoid regressing the real values in a highly nonlinear
manner. Other methods first predicts 2D joints with heatmaps and then regress
3D joint positions or depths from them. Tome et al. [24] have tried to iteratively
update 3D joints represented as a weighted combination of PCA basis that is
constructed from 3D MoCap dataset.
Exploiting skeletal structure and predicting angular pose In biome-
chanics, robotics and computer animation fields, inverse kinematics has been
well-studied and used to generate human pose from MoCap by controlling joint
angles. Previous approaches [20,4] estimated 3D human pose from 2D key points
by combining a statistical model and constraints such as joint limit [1], segment
length [20] and symmetry. Some methods perform regression of joint angles or
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Fig. 1. Network architecture of SkeletonNet. (a) SkeletonNet is a two-step regressor.
(b) The first part performs regression of bone rotations. (c) The second part detects
heatmaps of xy and zy spaces.

axis angles [29,10] to estimate angular skeletal pose using ConvNets but the high
nonlinearity prevents them from accurate prediction of joint locations.
Weakly supervision and predictions from in-the-wild images Recent
works tackle the data scarcity problem by using both 3D human pose dataset
captured in the experimental room and 2D human pose dataset captured in a
wide range of environment [28,15,23]. Sun et al. [23] used compositional loss
function that is defined by integrating 2D positions and depths by properly
normalizing the regression target values. Zhou et al. [28] took a weak supervised
approach and used bone length constraint when 3D information (depths) is not
available. The use of this approach not only enables 3D joint predictions from
in-the wild images but also performance boost in joint prediction accuracy. We
go further by building a 3D human pose dataset in-the-wild which includes
annotations of 3D bone rotations.

3 Skeleton Transformer Networks

Skeleton Transformer Networks (SkeletonNet) is based on deep ConvNets, which
predicts not only 3D joint positions but also rotations of body segments. Our
approach is based on an end-to-end two-step regression approach. The network
architecture of SkeletonNet is depicted in Fig. 1 (a). The first step is called
bone rotation regressor that performs regression of angular skeletal pose using
3 × 3 rotation matrices to provide an initial solution. The resulting pose is not
precisely accurate but it respects skeletal structure, without having to produce
large errors such as left and right confusions. The second step, cross heatmap
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regressor, starts from this initial solution and refine the joint predictions using
heatmap regression. We benefit from the two different paradigms, i.e., skeleton
and ConvNets, to achieve accuracy and preservation of structure.

3.1 Bone rotation regressor

Bone rotation regressor predicts bone rotations of a human skeleton. We achieve
this by solving two simpler problems separately: predicting 1) a global rotation
and 2) transformations of bone segments relative to the root. The idea behind
this strategy is that the global orientation of the body has some discrete patterns
e.g., sit, stand and lie, which can be effectively solved as a classification problem.
On the other hand, bone rotations have more continuous distributions within
some range, which can be effectively modeled as a regression problem.

To predict a global rotation, we convert the rotation estimation problem into
a classification problem. Specifically, we first cluster the training dataset into
200 clusters based on its global rotations with k-means clustering. The samples
within the same cluster is put in the same class. ConvNets is trained to output
rotation class probabilities pg using Softmax. We use a classification loss (cross
entropy) for supervision:

LRotG = Lcls(p
g, p̄g)

where Lcls is the log loss and p̄g is the one-hot class label of global rotation.
From the output probabilities pg, we obtain a 3×3 global transformation matrix
by blending cluster centers Cg, Rg′

= Cgpg. We tried linear blending of axis
angles but found that blending matrices works better.

Since bone rotations relative to the root have more continuous distributions
than global rotation, regression is more suitable in this case than classification.
Bone rotations Rb′

= [Rb′

1 . . .Rb′

n ], where n is the number of bones, are thus
predicted directly using a 3×3 rotation matrix (9 parameters). The loss for bone
rotations is defined using the mean squared error (MSE) loss as:

LRotB =

n∑
i

||vec(Rb′

i )− vec(R̄b
i )||22

where vec(·) makes a matrix to a vector and R̄b is the ground truth bone rota-
tions. Note that regression of rotation matrices demands more memory spaces
because they need more parameters than other rotation representation, such as
Euler angles, quaternions and axis angles. However, for 3D human pose detec-
tion, we have under 20 joints to predict, which means that the additional costs
are almost negligible. The down side of Euler angles and quaternions are their
nonlinearities and ambiguities (sign flips for quaternions and periodical angle
jumps for Euler angles), which is difficult to use as the regression targets—we
could not train a network properly using Euler angles as supervisions as reported
in [29].
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Gram Schmidt orthogonalization layer The problem of the above strat-
egy is that it does not guarantee to produce orthonormal matrices. This means
the resulting skeleton is deformed in an undesirable way with scales and shears.
To solve this issue, we propose the Gram Schmidt (GS) orthogonalization layer
which performs GS to make transformations into rotations. GS requires ele-
mental functions only, such as dot product, subtraction and division, which is
differentiable and can be relatively easily incorporated into ConvNets. We input
global transformation Rg′

and bone transformations Rb′
into the GS layer to

make transformations to rotations, obtaining Rg and Rb.
Once transformations are orthonormalized, we multiply a global rotation Rg

and bone rotations Rb in order to obtain the absolute bone rotations. Finally, 3D
joint positions are computed by applying these absolute rotations to the original
bone vectors in the rest pose and performing linear integration to add up bone
vectors from the root (Fig. 1 (b)).

3.2 Cross heatmap regressor

We propose cross heatmap regressor which is used for refining the 3D joints
obtained using bone rotation regressor. In the current design, cross heatmap
regressor stacks xy and zy heatmaps (Fig. 1 (c)) because they sufficiently cover
xyz coordinates and the variance of human joint locations in zy coordinates are
usually larger than that of zx space.

To integrate bone rotation regressor and cross heatmap regresor, we project
3D joint positions obtained in Sec 3.1 into the image plane (xy plane). Here,
we did not estimate a camera pose and scale explicitly. Instead we scale the xy
coordinates to 90% of the width of the first upsampling layer, which is 16 pixels.
From the projected 2D joints, 2D Gaussian maps [18] are obtained and, after
convolutions, they are summed up with the feature maps from bone rotation
regressor to serve as approximate positions of 2D joints for cross heatmap re-
gressor. Note that all of these process are differentiable, which can be optimized
using back propagation.

Once the feature maps are up-sampled three times to the size of 64 × 64, a
single stack of hourglass module [16] is used to compute cross heatmaps. The
cross heatmap representation concatenates two heatmaps, one for representing
2D joints in image space (xy space) hxy and the other for the zy space, hzy. For
training we use the MSE loss as:

Lhm =

m∑
i

∑
j,k

||hxy
(j,k) − h̄xy

(j,k)||
2
2 +

m∑
i

∑
j,k

||hzy
(j,k) − h̄zy

(j,k)||
2
2

where h̄xy and h̄zy are the ground truth heatmaps for xy and zy spaces. In ad-
dition, m is the number of joints. The benefit of this representation is that it
is more compact and efficient than the volumetric heatmaps, while maintaining
accuracy. To extract xyz coordinates from cross heatmaps in an end-to-end man-
ner, we use spatial argmax layers similar to those proposed in [14,12]. Finally,
we compute rotations dR that align bone vectors obtained using bone rotation
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Fig. 2. 3D pose annotation system. (a) Given 2D key points as inputs, we compute 3D
joints using the projected matching pursuit (PMP) technique. Next, skeleton rotations
are obtained using a skeleton transformation optimization method. 3D mesh is obtained
from rotations and positions. (b) With the annotation tool, the annotator is just needed
to judge whether the 3D pose is acceptable or not by comparing the real image and
the rendered image created from the mesh.

regressor with that of the final predicted positions. They are multiplied with the
predicted absolute bone rotations Rinit to make them consistent with the final
joint positions x. This way, we can exploit accurate heatmaps to refine rotations,
avoiding a difficult regression problem of nonlinear angle parameters. Now that
the loss for the final positions x and rotations R are defined as:

Lpos =

m∑
i

||xi − x̄i||22, LRot =

n∑
i

||vec(Ri)− vec(R̄i)||22

where and x̄i and R̄i are the ground truth labels of positions and rotations.

With the final positions x and rotations R, linear blend skinning can be done
to produce a 3D mesh. Note that we perform skinning outside the network but
this process can also be done within the network in an end-to-end manner, as
this is a linear matrix multiplication.

3.3 Loss function

For supervision, a standard cross entropy loss and MSE loss is used for comparing
the predictions and ground truth labels of the global rotation class probability,
bone rotations and cross heatmaps. In total, we minimize the loss function of
the form:

Ltotal = LRotG + αLRotB + βLRot + γLpos + λLhm

where LRotG, LRotB, LRot, Lpos and Lhm are a cross entropy loss for global
rotation and MSE loss for bone rotations Rb, final rotations R, final positions
x and cross heatmaps (hxy and hzy), respectively. In addition, α, β, γ and λ are
the respective weights.
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4 In-the-wild 3D Human Pose Dataset

To build 3D human pose dataset that have variations in clothes and background,
we annotate 3D positions and bone rotations on MPII human pose dataset as
shown in Fig. 2. To this end, we followed the human verification approach [17].
Here a 3D human pose is obtained from 2D key points using a previous technique,
which will then be sorted by human annotators whether each result is acceptable
or not. This is in spirit similar to the concurrent work of [11]. The aim for
constructing our dataset is not to provide accurate 3D pose annotations but
to obtain reasonable ones on in-the-wild images, including joint positions and
rotations, such that they can be used for training our bone rotation regressor.
In fact, the annotators are instructed to judge whether the pose is ‘acceptable’
or ‘bad’, e.g., if the global rotation of the resulting pose looks deviating from
the true pose more than 30 deg, the pose is ‘bad’. As a consequence, our dataset
have more 3D pose annotations than [11], possibly at the cost of accuracy.

To obtain 3D joint positions from 2D key points, we use the projected match-
ing pursuit (PMP) approach [20]. This method calculates a camera pose, scale
and 3D joint positions as a combination of PCA basis that is constructed from
Mocap database. From the resulting 3D joint positions, rotations of bones are
obtained based on a method which is conceptually similar non-rigid surface de-
formation techniques [22]. Specifically, the skeleton in the rest shape is fitted
to the PMP result by balancing the rigidity of bones, the smoothness between
bone rotations and the position constraints to attract the skeleton to them. The
initial rotations are obtained from local coordinate frames, which are defined in
a similar manner using [1]. Reconstructing one model from 2D key points takes
approx. 1min.

We also designed a simple annotation tool Fig. 2 (b) to simplify the process
of 3D pose annotations. With this tool, human annotators are just required to
decide a 3D pose is acceptable or not. In addition, we obtained skin meshes
from the 3D pose using linear blend skinning and showed rendered images. By
visualizing a skin mesh, it makes the annotators’ decisions significantly easier and
quicker. From among the images in MPII dataset, we extracted those with all 16
joints are inside the image region, which was approximately 20000 poses. After
annotations, we were able to collect 10291 images with 3D pose annotations.
Note that we remove ‘bad’ poses and do not use them in the training. It took
about 2-3 hours for an annotator to process 1000 images.

5 Experiments

5.1 Dataset and evaluation protocols

MPII [2] This dataset contains in-the-wild images for 2D human pose estima-
tion, which includes 25k training images and 3k validation images. Those images
are annotated with 2D joint locations and bounding boxes. In Section 4, we con-
structed a 3D pose dataset on top of MPII dataset by annotating 3D joints to
images. This dataset is used in training.
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Human3.6M Human 3.6M dataset [9] is used in training and testing. Human
3.6M dataset is a large scale dataset for 3D human pose detection. This dataset
contains 3.6 million images of 15 everyday activities, such as walking, sitting and
making a phone call, which is performed by 7 professional actors. 3D positions of
joint locations captured by motion capture (Mocap) systems are also available in
the dataset. In addition, 2D projections of those 3D joint locations into images
are available. The images are taken from four different views. As with previous
researches, we down-sampled the video from 50fps to 10fps in order to reduce
redundancy in video frames. We followed the same evaluation protocol used in
previous approaches [18,28] for evaluation, where we use 5 subjects (S1, S5, S6,
S7, S8) for training and the rest 2 subjects (S9, S11) for testing. We used the
3D model of an actor provided in Human3.6 to generate mesh animations but
this could be replaced with any 3D models.

The error metric used is called mean per joint position error (MPJPE) in
mm. In the evaluation protocol, the position of the root joints is aligned with
the ground truth but the global orientation is kept as is. Following [28] the
output joint positions from ConvNets is scaled so that the sum of all 3D bone
lengths is equal to that of a canonical average skeleton. This is done by:

Pj = (Ppred
j −Ppred

0 ) · lave/lpred (1)

where Ppred
j is the predicted position, P0 is the root position, lpred is the sum

of skeleton length of the predicted skeleton and lave is the average of sum of
skeleton length for all the training subjects in Human 3.6M dataset.

We also evaluated the method with the error measure called the reconstruc-
tion error, where, before calculating the error, the result is aligned to the ground
truth with a similarity transformation.

5.2 Baselines

Four baseline methods are implemented to conduct ablation studies. We trained
the first three networks using Human3.6M dataset only and the fourth one with
both Human3.6M and MPII dataset.
Rotation regress (Rot reg) only This only uses bone rotation regressor.
The position is computed from linear integration of bone rotations.
Heatmap (HM) only This on the other hand only uses cross heatmap regres-
sor.
Rot reg + HM This method is our proposed method which combines bone
rotation regressor and cross heatmap regressor.
All This is our proposed method trained using Human 3.6M and MPII dataset
with 3D annotations obtained using the method presented in Sec 4.

5.3 Implementation and training detail

Our method is implemented using MatConvNet toolbox [26]. For the bone rota-
tion regressor, we use ResNet50 [8] as the base network, which is pre-trained on



10 Y. Yoshiyasu et al.

Fig. 3. Some results on in-the-wild images.

the ImageNet dataset. A single up-sampling layer and a single hourglass module
is followed by the base network to predict heatmaps. We also use skip connec-
tions to connect skeleton regression layers and up-sampling layers. We used a
skeleton with 16 joints and 15 segments each of them have 9 rotational param-
eters. The definition of joints is same as that of MPII dataset. Training a whole
model takes about 1 day using three NVIDIA Quadro P6000 graphics cards with
24 GB memory. The batch size is 30 for each GPU. As for augmentation, we used
left/right flip only—no scaling and rotation augmentation is used. We trained
a model with SGD for 70 epochs, starting from the learning late of 0.001 and
decreasing it to 0.00001. During test time, a single forward pass of our network
is approx. 0.12 sec, which means the performance of our method is approx. 8-9
fps.

We set the parameters in the loss function as α = β = γ = 0.1 and λ = 0.001.
When training with both Human 3.6M and MPII datasets, we randomly selected
the images from both dataset such that half of the batch is filled with Human
3.6M and the other half by MPII dataset, following [28]. Since the 3D annotations
of MPII are not accurate, we use them for supervising bone rotation regressor
only. Thus, when training images are from MPII, we do not back propagate
gradients from the losses that include the final 3D pose, hzy, x and R, (i.e.,
Lpos, LRot and the right term of Lhm) to the network. On the other hand,
when the training sample is from Human3.6M dataset, which has accurate 3D
annotations, we minimize all the losses.
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5.4 Results

Qualitative results In Figs. 3 and 6, we show the result of our 3D pose predic-
tion method. Our method is able to predict 3D joint positions and bone orien-
tations reasonably accurately even on in-the wild-images. Because our method
can predict bone rotations of human body skeletons, we can produce mesh ani-
mations from 3D joint positions and rotations using linear blend skinning. Note
that the rotations of hands and feet are not supervised.

Comparisons to other state-of-the-art We have compared our techniques
against other state-of-the-art in Table 1. Our technique is comparable with other
state-of-the-art in terms of MPJPE. Volumetric heatamaps [18] can achieve
MPJPE approx. 71 mm. However, it got worse results when including MPII
(MPJPE 78 mm) with their decoupled structure, whereas we are around MPJPE
70 mm. Also, compared with [18] with two stacks of hourglass networks, cross
heatmap is more compact, which requires 1/32 of memory spaces to store.

Compared with the previous techniques that predict angular poses [29,10],
SkeletonNet is more accurate. In fact, MPJPE of our result is 69.9 mm, whereas
that of Kanazawa et al. [10] is 87.97 mm. In Table 2, we also compared the recon-
struction error with previous approaches. Our technique outperforms previous
techniques that iteratively optimizes joint angles [4] and perform regression of
joint angles [19]. The benefit of SkeletonNet is, in addition to estimating 3D
joint positions relatively accurately, we can predict 3D bone rotations, which is
useful in animating a human body mesh or possibly predicting dynamics such
as joint torques.

Table 1. Comparisons to other state-of-the-art. MPJPE [mm] is used for error metric.

Directions Discussion Eating Greeting Phoning Photo Posing Purchases

Zhou et al. [29] 91.8 102.4 97.0 98.8 113.4 90.0 93.8 132.2
Tome et al. [24] 64.98 73.47 76.82 86.43 86.28 110.67 68.93 74.79
Mehta et al. [15] 59.69 69.74 60.55 68.77 76.36 85.42 59.05 75.04

Pavlakos et al. [18] 67.38 71.95 66.70 69.07 71.95 76.97 65.03 68.30
Ours (All) 63.33 71.59 61.39 70.40 69.90 83.17 62.98 68.77

Sitting SittingDown Smoking Waiting WalkDog Walking WalkPair Average

Zhou et al. [29] 159.0 106.9 125.2 94.4 79.0 126.0 99.0 107.3
Tome et al. [24] 110.19 172.91 84.95 85.78 86.26 71.36 73.14 88.39
Mehta et al. [15] 96.19 122.92 70.82 68.45 54.41 82.03 59.79 74.14

Pavlakos et al. [18] 83.66 96.51 71.74 65.83 74.89 59.11 63.24 71.90
Ours (All) 76.81 98.90 68.24 67.45 73.74 57.72 57.13 69.95

Comparisons between baselines In Table 3 and Fig. 4, we show comparisons
between the baselines. As can be seen from Fig. 4 a, the result of bone rotation
regressor preserves skeletal structure, but the joint positions are not accurate
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Table 2. Comparison of reconstruction errors on Human 3.6M dataset.

Zhou et al. [30] Bogo et al. [4] Lassener et al. [11] Pavlakos et al. [19] Ours

106.7 82.3 80.7 75.9 61.4

Table 3. Comparisons between baselines. MPJPE [mm] is used for error metric.

Rot reg only Heatmap only Rot reg + HM All

112.43 128.55 87.05 69.95

enough. With only heatmaps, however, skeletal structure is sometimes destruc-
ted e.g., by the left and right flips. By combining our bone rotation and cross
heatmap regressor, a more accurate result is produced, while preserving skeletal
structure. Note that in previous work this kind of confusions are remedied by
incorporating recurrence [3] or using many stacks of a hourglass module [16]. By
training with both Human 3.6M and MPII, we get the best result (Table 3). In
addition, we found that annotating 3D rotations is important for reconstructing
human poses from in-the-wild images (Fig. 4 b). Thus, the key to our improve-
ments in MPJPE is the use of cross heatmap and the use of MPII dataset in
training. Even when MPII dataset is not provided for training, SkeletonNet can
predict reasonably accurately 3D human pose by exploiting the combination of
skeletal structure and heatmaps.

Comparisons between rotation representation We have also compared
the results of bone rotation regressor by changing its rotation representation.
Specifically, we tested the network that 1) regressess axis angles but indirectly
supervised with rotation matrices (AA), 2) regressess axis angles but supervised
with relative joint rotation matrices and converts them back to the absolute
space using forward kinematics, which is equivalent as SMPL [4] (FKAA), 3)
regresses absolute rotations (AbsRotReg), 4) regresses rotations without the GS
layer (w/o GS), 5) regresses a global rotation (GlobalReg), 6) classifies a global
rotation (GlobalClass) and 7) is same as GlobalClass but aligns rotations with
heatmaps (All), respectively. The networks are trained with Human 3.6M, except
for All that was trained with both MPII and Human 3.6M. To compare the
rotation prediction accuracy, we compute relative rotations between the ground
truth and predicted bone rotations, convert them to axis angles and take the
norms in degrees, which reflects all three DoFs of rotations.

In Table 4, Global Rot. Err. indicates the error of global rotations. Bone
Rot. Err. indicates the average error of bone rotations relative to the root. As
shown in Table 4, the proposed method based on the GS layer, which classifies a
global rotation, is the best in terms of MPJPE accuracy. AbsRotReg is also high
in accuracy but it produces bone rotations with its determinant of -1, which
collapse skeletal structure. The method based on axis angle tends to produce
large errors probably because of their high non-linearity, requiring an iterative
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Fig. 4. Comparisons of baselines. a) Bone rotation regressor preserves skeletal structure
but the joint positions are not accurate enough. With only heatmaps, skeletal struc-
ture is sometimes destructed e.g., with the left and right flips. By combining both, it
produces more accurate result while preserving structure. b) The rotation annotation
is important for reconstructing a pose from in the wild images. c) With the proposed
Gram Schmidt (GS) orthogonalization layer, undesirable deformations such as shears
and scalings are removed.

process [10] or a more informative geometric loss, e.g., the one using differences
between silhouettes [19]. In summary, our method can benefit from the use of
3×3 rotation matrices, which can probably be modeled as simpler functions than
other angle representations, which is more friendly to ConvNets to learn with.
As reported in [29], we could not train a network properly using Euler angles
as supervisions, where training and validation losses remained high. In contrast,
SkeletonNet can model subtle pose appearances due to e.g., medial and lateral
rotations around segment axes by providing supervisions on both rotations and
positions. With joint position supervisions only and no rotational supervisions,
it is possible to get reasonable results in joint position predictions [29] but is
difficult to obtain good results for bone orientations.

Table 4. Comparison of rotation representation.

AA FKAA AbsRotReg w/o GS GlobalReg GlobalClass All

MPJPE 175.06 197.44 114.70 124.06 119.18 112.42 69.95
Global Rot. Err. 30.46 35.81 18.83 21.28 21.64 20.81 12.93
Bone Rot. Err. 37.34 44.77 — 28.72 29.08 29.46 21.94

Failure cases and limitations In Fig. 5, we show failure cases. Our technique
fails when there are large self-occlusions and occlusions by objects or other hu-
mans. In addition, our network are currently designed for the single-person de-
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Fig. 5. Failure cases.

tection and thus fails when multiple humans exist in the image. Since we scale
a skeleton, we are not be able to model absolute bone lengths. Cross heatmap
regressor possesses the ability to alter relative bone lengths but our method have
generalization issues when the body type is extremely different from the original
skeleton, e.g., prediction of small children’s poses. Also our network does not
take into account hand and foot orientations.

6 Conclusion

We have presented SkeletonNet, a novel end-to-end 3D human pose detection
technique from a single image. The first step regresses bone segment rotations to
obtain an initial solutions without large errors by considering skeleton structure.
The second step performs refinement based on heatmap regressor that is based
on the representation called cross heatmap which stacks heatmaps of xy and
zy coordinates. This combination allows us to predict bone orientations and
joint positions accurately, which may provide useful information to applications
like animation and biomechanics. We also presented a 3D human pose dataset
constructed by adding 3D rotational annotations to publicly-available 2D human
pose dataset.

In future work, we would like to address monocular detections of other hu-
man body properties, such as body shape, body weight, contact forces and joint
forces/torques. We are also interested in generative adversarial networks (GAN)
to improve pose prediction results using an unsupervised manner based on the
image dataset that does not have 3D annotations.
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Fig. 6. More results.
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