Skip to main content

Predicting Video Frames Using Feature Based Locally Guided Objectives

  • Conference paper
  • First Online:
Book cover Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

  • 1740 Accesses

Abstract

This paper presents feature reconstruction based approach using Generative Adversarial Networks (GAN) to solve the problem of predicting future frames from natural video scenes. Recent GAN based methods often generate blurry outcomes and fail miserably in case of long-range prediction. Our proposed method incorporates an intermediate feature generating GAN to minimize the disparity between the ground truth and predicted outputs. For this, we propose two novel objective functions: (a) Locally Guided Gram Loss (LGGL) and (b) Multi-Scale Correlation Loss (MSCL) to further enhance the quality of the predicted frames. LGGL aides the feature generating GAN to maximize the similarity between the intermediate features of the ground-truth and the network output by constructing Gram matrices from locally extracted patches over several levels of the generator. MSCL incorporates a correlation based objective to effectively model the temporal relationships between the predicted and ground-truth frames at the frame generating stage. Our proposed model is end-to-end trainable and exhibits superior performance compared to the state-of-the-art on four real-world benchmark video datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. arXiv preprint arXiv:1710.11252 (2017)

  2. Bhattacharjee, P., Das, S.: Temporal coherency based criteria for predicting video frames using deep multi-stage generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 4268–4277 (2017)

    Google Scholar 

  3. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Tenth IEEE International Conference on Computer Vision 2005, vol. 2, pp. 1395–1402 (2005)

    Google Scholar 

  4. Bovik, A.C.: The Essential Guide to Video Processing, 2nd edn. Academic Press, Boston (2009)

    Google Scholar 

  5. Briechle, K., Hanebeck, U.D.: Template matching using fast normalized cross correlation. In: Proceedings of SPIE, vol. 4387, pp. 95–102 (2001)

    Google Scholar 

  6. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 41–48 (2009)

    Google Scholar 

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Kalchbrenner, N., et al.: Video pixel networks. In: International Conference on Machine Learning, pp. 1771–1779 (2017)

    Google Scholar 

  11. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: IEEE International Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  13. Lan, T., Chen, T.-C., Savarese, S.: A hierarchical representation for future action prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 689–704. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_45

    Chapter  Google Scholar 

  14. Lewis, J.P.: Fast normalized cross-correlation. In: Vision Interface, vol. 10, pp. 120–123 (1995)

    Google Scholar 

  15. Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion GAN for future-flow embedded video prediction. arXiv preprint (2017)

    Google Scholar 

  16. Liu, Z., Yeh, R., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: International Conference on Computer Vision (ICCV), vol. 2 (2017)

    Google Scholar 

  17. Lu, C., Hirsch, M., Schölkopf, B.: Flexible spatio-temporal networks for video prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6523–6531 (2017)

    Google Scholar 

  18. Luo, J., Konofagou, E.E.: A fast normalized cross-correlation calculation method for motion estimation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1347–1357 (2010)

    Article  Google Scholar 

  19. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  20. Nakhmani, A., Tannenbaum, A.: A new distance measure based on generalized image normalized cross-correlation for robust video tracking and image recognition. Pattern Recogn. Lett. 34(3), 315–321 (2013)

    Article  Google Scholar 

  21. Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.: Action-conditional video prediction using deep networks in atari games. In: Advances in Neural Information Processing Systems, pp. 2863–2871 (2015)

    Google Scholar 

  22. van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759 (2016)

  23. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604 (2014)

  24. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th IEEE International Conference on Pattern Recognition 2004, vol. 3, pp. 32–36 (2004)

    Google Scholar 

  25. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  26. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning, pp. 843–852 (2015)

    Google Scholar 

  27. Subramaniam, A., Chatterjee, M., Mittal, A.: Deep neural networks with inexact matching for person re-identification. In: Advances in Neural Information Processing Systems, pp. 2667–2675 (2016)

    Google Scholar 

  28. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. In: ICLR, vol. 1, no. 2 (2017)

    Google Scholar 

  29. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances In Neural Information Processing Systems, pp. 613–621 (2016)

    Google Scholar 

  30. Vondrick, C., Torralba, A.: Generating the future with adversarial transformers. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  31. Walker, J., Gupta, A., Hebert, M.: Patch to the future: unsupervised visual prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3302–3309 (2014)

    Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. (TIP) 13(4), 600–612 (2004)

    Article  Google Scholar 

  33. Xue, T., Wu, J., Bouman, K., Freeman, B.: Visual dynamics: probabilistic future frame synthesis via cross convolutional networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2016)

    Google Scholar 

  34. Zhou, Y., Berg, T.L.: Learning temporal transformations from time-lapse videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 262–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateep Bhattacharjee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3052 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharjee, P., Das, S. (2019). Predicting Video Frames Using Feature Based Locally Guided Objectives. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics