Skip to main content

Reverse Densely Connected Feature Pyramid Network for Object Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Abstract

The wide and extreme diversity of object size is an ever-lasting challenging issue in object detection research. To address this problem, we propose Reverse Densely Connected Feature Pyramid Network (Rev-Dense FPN), a novel multi-scale feature transformation and fusion method for object detection. Through reverse dense connection, we directly fuse all the feature maps of higher levels than the current one. This avoids useful contextual information on the higher level to vanish when passed down to lower levels, which is a key disadvantage of widely used feature fusion paradigms such as recursive top-down connection. Therefore, a more powerful hierarchical representation structure can be obtained by effectively aggregating multi-level contexts. We apply Rev-Dense FPN on SSD framework, which reaches 81.1% mAP (mean average precision) on the PASCAL VOC 2007 dataset and 31.2 AP on the MS COCO dataset. The results show that Rev-Dense FPN is more effective in dealing with diversified object sizes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bell, S., Zitnick, C.L., Bala, K., Girshick, R.B.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: IEEE CVPR (2016)

    Google Scholar 

  2. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22

    Chapter  Google Scholar 

  3. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS (2016)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: IEEE CVPR (2009)

    Google Scholar 

  5. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  6. Fu, C., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. CoRR abs/1701.06659 (2017)

    Google Scholar 

  7. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE CVPR (2014)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE ICCV (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE ICCV (2015)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE TPAMI 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR (2016)

    Google Scholar 

  12. Hong, S., Roh, B., Kim, K., Cheon, Y., Park, M.: Pvanet: lightweight deep neural networks for real-time object detection. CoRR abs/1611.08588 (2016)

    Google Scholar 

  13. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE CVPR (2017)

    Google Scholar 

  14. Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., Chen, Y.: RON: reverse connection with objectness prior networks for object detection. In: IEEE CVPR (2017)

    Google Scholar 

  15. Kong, T., Yao, A., Chen, Y., Sun, F.: Hypernet: towards accurate region proposal generation and joint object detection. In: IEEE CVPR (2016)

    Google Scholar 

  16. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head R-CNN: in defense of two-stage object detector. CoRR abs/1711.07264 (2017)

    Google Scholar 

  17. Li, Z., Zhou, F.: FSSD: feature fusion single shot multibox detector. CoRR abs/1712.00960 (2017)

    Google Scholar 

  18. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: IEEE CVPR (2017)

    Google Scholar 

  19. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE ICCV (2017)

    Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  22. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  23. Peng, Z., Bingbing, N., Cong, G., Jianguo, H., Yi, X.: Scale-transferrable object detection. In: IEEE CVPR (2018)

    Google Scholar 

  24. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE CVPR (2016)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE CVPR (2017)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE TPAMI 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  27. Shen, Z., Liu, Z., Li, J., Jiang, Y., Chen, Y., Xue, X.: DSOD: learning deeply supervised object detectors from scratch. In: IEEE ICCV (2017)

    Google Scholar 

  28. Shrivastava, A., Sukthankar, R., Malik, J., Gupta, A.: Beyond skip connections: Top-down modulation for object detection. CoRR abs/1612.06851 (2016)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Natural Science Foundation of China: 61672497, 61332016, 61771457, 61732007, 61620106009, 61650202 and U1636214, in part by National Basic Research Program of China (973 Program): 2015CB351802, in part by Key Research Program of Frontier Sciences of CAS: QYZDJ-SSW-SYS013, and in part by Shandong Provincial Natural Science Foundation, China: ZR2017MF001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xin, Y., Wang, S., Li, L., Zhang, W., Huang, Q. (2019). Reverse Densely Connected Feature Pyramid Network for Object Detection. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics