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Abstract. We propose an efficient Stereographic Projection Neural Net-
work (SPNet) for learning representations of 3D objects. We first trans-
form a 3D input volume into a 2D planar image using stereographic
projection. We then present a shallow 2D convolutional neural network
(CNN) to estimate the object category followed by view ensemble, which
combines the responses from multiple views of the object to further en-
hance the predictions. Specifically, the proposed approach consists of four
stages: (1) Stereographic projection of a 3D object, (2) view-specific fea-
ture learning, (3) view selection and (4) view ensemble. The proposed ap-
proach performs comparably to the state-of-the-art methods while having
substantially lower GPU memory as well as network parameters. Despite
its lightness, the experiments on 3D object classification and shape re-
trievals demonstrate the high performance of the proposed method.

Keywords: 3D object classification - 3D object retrieval - Stereographic
Projection - Convolutional Neural Network - View Ensemble - View Se-
lection.

1 Introduction

In recent years, success of deep learning methods, in particular, convolutional
neural network (CNN), has urged rapid development in various computer vision
applications such as image classification, object detection, and super-resolution.
Along with the drastic advances in 2D computer vision, understanding 3D shapes
and environment have also attracted great attention.

Many traditional CNNs on 3D data simply extend the 2D convolutional op-
erations to 3D, for example, the work of Wu et al. [36] which extends 2D deep
belief network to 3D deep belief network, or the works of Maturana et al. [I8] and
Sedaghat et al. [25] where they extend 2D convolutional kernels to 3D convolu-
tional kernels. Furthermore, Brock et al. [5] and Wu [35] proposed to build deeper
3D CNNs following the structures from inception-module, residual connections,
and Generative Adversarial Network (GAN) to improve the generalization ca-
pability. However, these methods are based on 3D convolutions, thereby having
high computational complexity and GPU memory consumption.
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An alternate approach is based on projected 2D views of the 3D object to
exploit established 2D CNN architectures. MVCNN [31] renders multiple 2D
views of a 3D object and use them as an input to 2D CNNs. Some other works
[281261T] propose to use the 2D panoramic views of a 3D shape. However, these
methods can only observe partial parts of the 3D object, failing to cover full 3D
surfaces.

To address all these limitations, we introduce a novel 3D shape representation
technique using stereographic mapping to project the full surfaces of a 3D object
onto a 2D planar image. This 2D stereographic image becomes an input to our
proposed shallow 2D CNN, thereby reducing substantial amount of network
parameters and GPU memory consumption compared to the state-of-the-art 3D
convolution-based methods, while achieving high accuracy.

By taking advantage of multiple projected views generated from a single 3D
shape, we propose view emsemble to combine predictions of most discrimina-
tive views, which are sampled by our view selection network. On the contrary,
Conventional methods [3T283320/34/1] simply aggregate the responses of all
multiple views via max or average pooling.

2 Related Work

In this section, we review recent deep learning methods for 3D feature learning.
These methods are categorized in term of different feature representations; (1)
point cloud-based representations, (2) 3D model-based representations, and (3)
2D and 2.5D image-based representations.

Point cloud-based methods: While previous works often combine hand-crafted
features or descriptors with a machine learning classifier [ITI3249], the point
cloud-based methods operate directly on point clouds in an end-to-end manner.
In [6I21116], the authors designed novel neural network architectures suitable
for handling unordered point sets in 3D. Features based on point clouds often
require spatial neighborhood queries, which can be hard to deal for inputs with
large numbers of points.

3D model-based methods: Voxel-based methods learn 3D features from vox-
els which represent 3D shape by the distribution of corresponding binary vari-
ables.

In 3D shapeNet [36], the authors proposed a method which learns global fea-
tures from voxelized 3D shapes based on the 3D convolutional restricted Boltz-
mann machine. Similarly, Maturana and Scherer [I8] proposed VoxNet which in-
tegrates a volumetric occupancy grid representation with a supervised 3D CNN.
In a follow-up, Sedaghat et al. [25] extended VoxNet by introducing auxiliary
task. They proposed to add orientation loss in addition to the general classifica-
tion loss, in which the architecture predicts both the pose and class of the object.
Furuya et al. [I0] proposed Deep Local feature Aggregation Network (DLAN)
which combines rotation-invariant 3D local features and their aggregation in a
single architecture.
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Sharma et al. [27] proposed a fully convolutional denoising auto-encoder to
perform unsupervised global feature learning. In addition, 3D variational auto-
encoders and generative adversarial networks have been adopted by Brock et al.
[B] and Wu et al. [35], respectively. Furthermore, recent works[34122] exploit the
sparsity of 3D input using the octree data structure to reduce the computational
complexity and speed up the learning of global features.

2D/2.5D image-based methods: Image-based methods have been considered
as one of the fundamental approaches in 3D object classification. Light Field
descriptor (LFD)[8] by Chen et al. used multiple views around a 3D shape, and
evaluates the dissimilarity between two shapes by comparing the corresponding
two view sets in a greedy way instead of learning global features by combining
multi-view information. Bai et al. [3] used a similar approach but using the
Hausdorff distance between the corresponding view sets to measure the similarity
between two 3D shapes.

Su et al. [3T] proposed a CNN architecture that aggregates information from
multiple views rendered from a 3D object which achieves higher recognition
performance compared to single view based architectures. By decomposing each
view sequence into a set of view pairs, Johns et al. [I4] classified each pair
independently and learned an object classifier by weighting the contribution of
each pair, which allows 3D shape recognition over arbitrary camera viewpoint.
To perform pooling more efficiently, Wang et al. [33] proposed a dominant set
clustering technique where pooling is performed in each cluster individually.
Kanezaki et al. [I5] proposed RotationNet which takes multi-view images of an
object and jointly estimates its object category and poses. RotationNet learns
viewpoint labels in an unsupervised manner. Moreover, it learns view-specific
feature representations shared across classes to boost the performance.

As an alternative approach, Gomez-Donoso et al. [I2] proposed LonchaNet
which uses three orthogonal slices from 3D point cloud as an input to three in-
dependent GoogLeNet networks, each network learning specific features for each
slice. Cohen et al. [7] in Spherical CNNs proposed a definition for the spherical
cross-correlation that is both expressive and rotation-equivariant. The spherical
correlation satisfies a generalized Fourier theorem, which allows to compute it ef-
ficiently using a generalized Fast Fourier Transform (FFT) algorithm. Papadakis
et al. [I9 proposed PANORAMA that uses a set of panoramic views of a 3D
object which describe the position and orientation of the object’s surface in 3D
space. 2D Discrete Fourier Transform and the 2D Discrete Wavelet Transform
are computed for each view. Shi et al. in DeepPano [28], projected each 3D shape
into a panoramic view around its principal axis and used a CNN for learning
the representations from these views. To make the learned representations in-
variant to the rotation around the principal axis a row-wise max-pooling layer
is applied between the convolution and fully-connected layers. to achieve better
feature descriptor for a 3D object in the training phase, Sfikas et al. [I] use three
panoramic views corresponding to the major axes and taking average pooling
over feature descriptor of each view for the training of an ensemble of CNNs.
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3 Proposed Stereographic Projection Network

In this section, we provide details of our proposed approach. We first describe
how to transform a 3D object into a 2D planar image using stereographic pro-
jection. Then, we give the detailed description of the proposed shallow 2D CNN
architecture, SPNet, followed by the procedures for view selection and view en-
semble.

3.1 Streographic Representation

Stereographic projection is a mapping that projects a 2D manifold onto a 2D
plane. Such a technique is well developed in the field of Topology and Geography
to project surface of the earth to a 2D planar map [30]. Since then, various
projection functions have been proposed to improve the quality of mapping.
In this work, we explore different types of projection functions showing that
stereographic projection preserves the more detailed surface structure of a 3D
object.

To construct the stereographic representation of a 3D object, we first nor-
malize the 3D object such that a unit sphere can fully cover it. We then translate
the origin of the sphere to the center of the object assuming that the orientation
of the object is aligned. For each point p on the surface of the object, we denote
e as a unit vector from the origin o to the point p as shown in Fig. a). By
assuming that the poles are aligned with the z-axis, image coordinates in 2D
mapped image can be determined by different types of projection functions as
follow:

(b)Uvﬂnapping (C)Kavrayskiy VII (d)Cassini (e)Eckcrt v

X
e = (ex ey ;)

(a) Chair (f)Panorama (g)peptn-map (h)stice

Fig.1: 2D representation of surface of 3D object. (a) 3D mesh model with a
point p at the surface and its corresponding unit vector e from the origin 0.
(b) (e) different types of stereographic projection functions. (f) Panoramic view
[28126/1]. (g) Depth-map [3I14]. (h) Slice-based projection [12].
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where, A = arctan2(e,,e,) and ¢ = arcsine, refer to the longitude and the
latitude, respectively.

After determining the UV coordinates of the 3D object in the 2D mapped
image, we set a value of each pixel with the distance of the corresponding point
p from the origin in the 3D object as shown in Fig. [If(a). We discretize the 2D
image to have a size of 128 x 128. As shown in Fig. b)—(h). We note that the
stereographic representations of 3D object preserve more details about the shape
of the 3D object compared to other approaches such as panorama [2826//T], slice
[12], and multi-view [3TIT5] representations.

3.2 Network Architecture

We propose SPNet, a very shallow 2D CNN which consists of 4 convolutional
layers and two fully connected layers. For each convolutional layer, we use a
convolutional kernel of size 3x3 followed by tanh non-linearity and 2x2 max-
pooling layers except for the last convolutional layer where we use global average
pooling in place of max-pooling. Each side of inputs to all convolutional layers
is zero-padded by 1 pixel to keep the feature map size unchanged. We also
propose to add dropout after every layer except for the last fully connected layer
to prevent over-fitting and for better generalization capability. The number of
feature maps of our convolutional layers is 24, 32, 48, and 64, respectively. Details
of the model are shown in Fig.
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Fig. 2: Illustration of proposed SPNet, a shallow 2D convolutional neural network
architecture. a; ; denotes the output from the last fully connected layer.

3.3 View Selection

To construct multiple view stereographic representations from a 3D object, we
augment the data with azimuth and elevation rotations. We first rotate the object
along the gravity axis, each rotated 45° intervals. We further generate more
views through elevation rotations with 45° intervals. Both angles are sampled
uniformly from [0, 360°] to generate N = 64 views in total. Let us denote
generated views of the object x; as {v; };\le where ¢ refers to the instance of the
3D object and j refers to the rotated instance of the corresponding 3D object.
All views v; ; are fed into the trained SPNet in Fig. [2] to extract the view-
specific feature response maps a; ;. All N view-specific features are then passed
through a one-by-one convolutional layer to perform weighted-average over all
view-specific features. The output is then used as a final prediction score map.
The overall process of view selection is visualized in Fig. The one-by-one
convolutional layer in our view selection learns the importance of each view-
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Fig. 3: Illustration of view selection and view ensemble. Both view selection and
view ensemble adopt the same architecture but with different numbers of views
to train each model. a; ; is the output of SPNet for the corresponding view v; ;.
Darker colors on the view-specific features a; ; and on the weights of the one-by-
one convolutional layer denote higher values. Red boxes on the weights of the
one-by-one convolutional kernel indicate the selected views.
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specific features, thereby indicating the degree of contributions of each view
to the final prediction. Once our view selection converges, we select M most
discriminative views {v;“)j}jﬂil where M < N by observing the highest weight
values in the one-by-one convolutional kernel.

3.4 View Ensemble
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Fig.4: Comparison of different types of ensemble. Darker colors on each view-
specific features and weights of the one-by-one convolutional kernel indicate
higher values.

Many recent works [23/T3|T7] have shown that the use of ensemble technique
provides a significant boost to the classification performance. Thus, we also ex-
ploit the weighted-average over predictions of M selected views {v;‘ j }Jj\il

We train our view ensemble model in Fig. |3| by using only the selected most
important M views {v;* j }j]\/i1 Moreover, we examine different types of aggrega-
tion for the predictions of M selected views:

Max-pooling:

g7 = max{a, }, ©)
Avg-pooling:
M
i = aly (10)
j=1
Weighted-average:
M
g =D _wjai;, (11)
j=1

Where, g7 denotes the estimate of the object category label for each object
ZTj.

We have tested these three ensemble methods empirically and found that by
learning the weights {w;‘ }Jj\il of the one-by-one convolutional layer properly, the
weighted-average produces superior performance over the max-pooling and the

average-pooling [3TI28)3320134/T], as shown in Table
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4 Experimental Evaluation

4.1 Datasets

We have evaluated our method on the two subsets of the Princeton ModelNet
large-scale 3D CAD model dataset [36] and the ShpeNet Core55, a subset of the
ShapeNet dataset [24].

ModelNet-10 includes ten categories of 3991 and 908 models into training,
and testing partitions, respectively. The dataset provides objects of same orien-
tations.

ModelNet-40 contains 12,311 CAD models split into 40 categories that pro-
vides objects of same orientations. The training and testing subsets consist of
9843 and 2468 models, respectively.

ShapeNet Coreb5 contains 51,300 3D models in 55 categories and several
subcategories. Two versions of ShapeNet Core55 exist (a) consistently aligned
3D models and (b) models that are perturbed by random rotations. This dataset
split into three subsets of 70%, 10% and 20% for training, validation, and testing
respectively. We trained and evaluated our 3D retrieval method on the training
set and test set of the aligned 3D models, respectively.

4.2 Training

The baseline architecture of our CNN is shown in Fig. [2| which is smaller than
the VGG-M network architecture that MVCNN [31] used. Table [I| shows the
comparison of classification accuracy on the ModelNet-10 [36] of our baseline
architecture and some famous Convolutional Neural Network architectures. To
train SPNet, we used SGD optimizer with a learning rate of 0.01.

Table 1: Classification accuracy on ModelNet-10 with various network architec-
tures for a single view.

Architectures SPNet (ours) VGG-16 ResNet-18 ResNet-32 ResNet-50 ResNet-101
Accuracy 93.39%  83.92% 91.74%  91.19%  92.18% 91.41%

4.3 Choice of Stereographic Projection

We have evaluated several stereographic projection models for the 3D classifi-
cation task including UV, Kavrayskiy VII, Eckert IV, and Cassini [30]. Table
shows the test results on ModelNet-10 [36], where we can clearly observe that
the UV-mapping outperforms the others. Since the UV-mapping is proven to be
the best, we will use this mapping function in all subsequent experiments.
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Table 2: Classification accuracy on ModelNet-10 with various mapping functions.

mapping function accuracy
UV [30] 93.39%
Kavrayskiy VII [30] 93.17%
Eckert IV [30] 89.76%
Cassini [30] 92.51%

Depth-map (YZ-plane) 85.02%
Panorama (around Z-axis) 92.07%

4.4 Test on View Selection Schemes

We consider three view selection setups for the ensemble of the multi-view 2D
stereographic representation to demonstrate the preference and power of our
view selection approach.

Case (i): Major axes In this case, we set the viewpoints along three axes,
x-axis, y-axis, and z-axis. The objects have same orientation namely that the
viewpoint is along the x-axis. To obtain the two other viewpoints, each time we
rotate the objects by 8 = 90° and ¢ = 90° around z-axis and y-axis, respectively.
Case (ii): 12 MVCNN In this case, we fix z-axis as the rotation axis. We place
the viewpoints at ¢ = 30° from the ground plane and each time rotate the objects
by 6 = 30° around the z-axis to obtain 12 views for the object.

Case (iii): View Selection Our view selection method which learns the view’s
influence by a one-by-one convolutional layer. We used the method on 64 different
rotations by rotating the objects around z-axis and y-axis and then selected the
views with the highest influence.

We compared the classification accuracy for these three view setup on the
ModelNet-10 [36] with our view ensemble neural network architecture named SP-
Net_VE. Table[3]shows the comparison of classification accuracy on the ModelNet-
10 [36] of plain and ensemble with the Max-pooling, Avg-pooling, and one-
by-one convolutional layer as a weighted-average over the score features of the
multi-view 2D representations. From these results, we observe that our learned
weighted averaging of 5 views gives the best performance over other schemes, so
that we use this ensemble model for our experiments.

4.5 3D Object Classification

We have first evaluated our baseline method SPNet in classification on both
ModelNet-10 [36] and ModelNet-40 [36]. The performance of our model is mea-
sured by the average binary categorical accuracy.

We have compared our method with recent sate-of-the-art methods including
3D ShapeNet [36], GIFT [3], DeepPano [28], Multi-view Convolutional Neural
Networks (MVCNN) [31], Geometry Image descriptor [29]. In addition to above
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Table 3: Classification accuracy on ModelNet-10 with various view selection
schemes.

View setup #views Max-pool Avg-pool one-by-one conv
Plain 1 93.39% 93.39% 93.39%
Major axes 3 95.15%  95.59% 96.26%
MVCNN 12 91.63% 92.51% 92.40%
1 93.39% 93.39% 93.39%
2 95.82% 96.15% 96.15%
3 95.59%  95.59% 96.26%
View Selection 4 95.15%  95.48% 96.58%
5 94.05% 95.93% 97.25%
6 94.16% 95.15% 97.03%
64 90.64% 91.74% 91.52%

methods the results are extended to include the following voxel based meth-
ods: ORION [25], 3D-GAN [35], VoxNet [I8], O-CNN [34] and OctNet [22]. Ta-
ble 4] summarizes the comparative results of classification on ModelNet-10 and
ModelNet-40 in terms of GPU memory usage and the number of parameters
during the training phase, and classification accuracy.

We note that in our approach, the view-ensemble model (SPNet_VE) boosts
significant performance improvement over the baseline model (SPNet) by 3.9%
and 4.0% on ModelNet-10 and ModelNet-40, respectively. Moreover, SPNet_VE
achieved comparable results to those of the state-of-the-arts RotationNet [I5],
while requiring much less memory (2%) and network parameters (0.2%), respec-
tively. Note also that there is a large gap between the average (94.82%) and
maximum (98.46%) accuracy of the RotationNet [I5] which shows this method
is not stable while our method showed consistent performances (97.25%) for each
trial of training process.

4.6 Shape Retrieval

We have evaluated the view ensemble version, SPNet_VE with the learned five
views for the 3D object retrieval task under three datasets, ModeNet-10 [36],
ModelNet-40 [36] and ShepeNet Core 55 [24]. Table [5| shows the results of our
retrieval experiment on the test sets of ModelNet-10 and ModelNet-40 with mean
Average Precision (mAP) in comparison with other state-of-the-art methods.
We used the learned global features of our ensemble network before the last
tanh activation function. Then, we applied the softmax function to create the
best feature descriptors for all 3D objects. We sorted the most relevant 3D
objects for each query from the test set by using both L; and Lo distance
metrics. Our SPNet_VE with L; achieved the best performance on ModelNet-10
and the second best on ModelNet-40. Note that the complexity of our model is
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Table 4: Classification results and comparison to state-of-the-art methods on
ModelNet-10 and ModelNet-40. Also the number of parameters and GPU mem-
ory usage. VE indicates view ensemble.
InputModality Method GPU memory Parameters ModelNet
class 10 class 40

. PointNet [6 - 3.5M - 89.2%
Point Clouds PointNet—ﬁl——ij— 1] ; - - 9L.9%
ShapeNet [36] 60.5MB 15M 83.50% 77.00%
LightNet [2] 2MB 0.3M 93.39% 86.90%
ORION [25] 4.5MB 0.91M 93.80% -
VRN [3] 129MB 1SM  93.60% 91.33%
3D Volume VRN Ensemble [5] 678MB 93.5M  97.14% 95.54%
VoxNet [18] 4.5MB 0.9M 92.00% 83.00%
FusionNet [2] 548MB 118M  93.10% 90.80%
3D-GAN [35] 56MB 1M 91.00% 83.30%
OctNet [22] - - 90.42% -
O-CNN [34] ; ; - 90.6%
Spherical CNNs [7 - 1.4M - -
Others 1 hchaNet [12] & ; 15M  94.37% -
MVCNN [31] 331MB 1M T 00.10%
2D Represen. MVCNN-MultiRes [20] - 180M - 91.40%
RotationNet [15] 731MB 42M  98.46% 97.37%
DeepPano [28] 9.8MB 3.27TM  85.45% T77.63%
PANORAMA-NN [26] 6.77MB 2.86M  91.10% 90.70%
PANORAMA-ENN [I] 42MB 8.6M 96.85% 95.56%
2.5D Represen. GIFT [3] - - 92.35% 83.10%
Pairwise [14] - 42M 92.80% 90.70%
SPNet (ours) 3MB 86K 93.39% 88.61%
SPNet_VE (ours) 15MB 86K 97.25% 92.63%

much lighter than PANORAMA-ENN [IJ; only 36% and 1% of the memory and
parameters of PANORAMA-ENN are used, respectively.

Table [6] shows our results of the retrieval experiment on the large-scale nor-
malized ShapeNet Coreb5 dataset. We tested our ensemble model by F-score,
mean Average Precision (mAP) and Normalized Discounted Gain (NDCG) met-
rics in comparison to [BJI0]. The Macro-averaged is an unweighted average over
the entire dataset while the Micro-averaged gives an average over category. The
proposed method outperformed the other methods by NDCG metric on both
the Macro and Micro averaged.

Fig. [f] shows some of the retrieval cases on the test set of the ModelNet-10.
The first column in the figure illustrates the queries and the remaining columns
illustrate the corresponding retrieved objects in rank order. The red models
indicate that the retrieved objects are in a wrong class with the queries. In other
cases, the queries and the retrieved objects have the same classes. For instance,
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Table 5: Comparison of retrieval results measured in mean Average Precision
(mAP) on the ModelNet-10 and ModelNet-40 datasets.
Method GPU memory Parameters ModelNet(mAP)
class 10 class 40

MVCNN [31] 331MB 49M - T9.5%
Geometry Image [29) - - 74.9%  51.3%
GIFT [3] ; ; 91.12% 81.94%
DeepPano [28] 9.8MB 3.2TM  84.18% 76.81%
3D ShapeNets [36] - - 68.3% 49.2%
PANORAMA-ENN [I] 42MB 8.6M 93.28% 86.34%
SPNet_VE (L2) 15MB 86K  92.94% 84.68%
SPNet_VE (L1) 15MB 86K 94.20% 85.21%

in the class of the dresser, the retrieved objects are so similar to the query
while they are from different classes. The reason for these failure cases is that
some objects from two different classes are hard to distinguish. Note that our
approach does not have any failure cases in the class of Chair and Toilet of the
ModelNet-10. Fig. [f] shows the confusion matrix for all 3D objects on the test set
of ModelNet-10. The similarity is measured by L1 distance. Therefore, so lower
values indicate higher similarities between pairs of objects.

Table 6: Retrieval results measured in F-score, mean Average Precision (mAP)
and Normalized Discounted Gain (NDCG) on the normalized ShapeNet Core55.
VE indicates View Ensemble.
Method Micro-averaged Macro-averaged
F-score mAP NDCG F-score mAP NDCG

Kanezaki 79.8% 77.2% 86.5% 59.0% 58.3% 65.6%

Zhou 76.7% 72.2% 82.7% 58.1% 57.5% 65.7%
Tatsuma 772% 74.9% 82.8% 51.9% 49.6% 55.9%
FUruya 71.2% 66.3% 76.2% 50.5% 47.7% 56.3%
Thermos 69.2% 62.2% T73.2% 48.4% 41.8% 50.2%
Deng 47.9% 54.0% 65.4% 16.6% 33.9% 40.4%
Li 28.2% 19.9% 33.0% 19.7% 25.5% 37.7%
Mk 25.3% 19.2% 27.7% 25.8% 23.2% 33.7%

SHREC16-Su 76.4% 73.5% 81.5% 57.5% 56.6% 64.0%
SHREC16-Bai 68.9% 64.0% 76.5% 45.4% 44.7% 54.8%
SPNet_VE 78.9% 69.2% 89.0% 53.5% 39.2% 69.5%
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4.7 Implementation

We have evaluated the proposed method SPNet on an Intel (R) Core (TM) i5
@ 3.4GHz CPU system, with 32GB RAM and NVIDIA (R) GTX 1080 Ti GPU
with 12GB RAM. The system was developed in Python 3.5.2, and the network
was implemented using TensorFlow-1.4.0 via CUDA instruction set on the GPU.
The runtime of our SPNet and the prepossessing per each object are 2.5ms and
120ms, respectively.

5 Conclusions

We proposed a novel ensemble architecture to learn 3D object descriptors based
on the Convolutional Neural Networks. We used stereographic transformation
to project 3D objects into a 2D planar followed by 2D CNNs to give confidence
scores for multiple views. A one-by-one convolutional layer learns the importance
of each view and selects the best views ordinary. To improve the performance,
we proposed an ensemble CNN which combines the responses from the chosen
views by weighted-averaging with learned weights. We evaluated our network on
two large-scale datasets, ModelNet, and ShapeNet Coreb5. We showed that the
performance of the proposed method for the classification task is par to those
of the state-of-the-art approaches, while outperforms most existing works in the
retrieval task. Moreover, our proposed model is most efficient regarding GPU
memory usage and the number of parameters compared to existing networks.

In the future works, the ensemble neural network can be extended. Moreover,
The datasets that we used do not contain texture and color information. The
one channel 2D plane represented by our stereographic representation could be
extended to more channels if this information existed.
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