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Abstract. Predicting the future is a fantasy but practicality work. It
is the key component to intelligent agents, such as self-driving vehicles,
medical monitoring devices and robotics. In this work, we consider gen-
erating unseen future frames from previous observations, which is no-
toriously hard due to the uncertainty in frame dynamics. While recent
works based on generative adversarial networks (GANs) made remark-
able progress, there is still an obstacle for making accurate and realistic
predictions. In this paper, we propose a novel GAN based on inter-frame
difference to circumvent the difficulties. More specifically, our model is
a multi-stage generative network, which is named the Difference Guided
Generative Adversarial Network (DGGAN). The DGGAN learns to ex-
plicitly enforce future-frame predictions that is guided by synthetic inter-
frame difference. Given a sequence of frames, DGGAN first uses dual
paths to generate meta information. One path, called Coarse Frame Gen-
erator, predicts the coarse details about future frames, and the other
path, called Difference Guide Generator, generates the difference image
which include complementary fine details. Then our coarse details will
then be refined via guidance of difference image under the support of
GANs. With this model and novel architecture, we achieve state-of-the-
art performance for future video prediction on UCF-101, KITTTI.

1 Introduction

Predicting the future has drawn increasing attention due to its great practical
value in various artificial intelligence applications, such as guiding unmanned
vehicles, monitoring patient condition, to name a few. In this paper, we consider
the task that learns from the prior video frames to predict the future frames.
Some previous distinguished works which aim to predict the low-level informa-
tion like action [24], the flow [I3I25], or skeleton [27T] have shown remarkable
success. The limitation is that they do not predict the holistic information. To
ameliorate it, we adopt this strategy which develop a model that can acquire
complete future RGB-images of the future not just one-sided information. The
images can then be transferred to other video analysis tasks such as action recog-
nition or utilized for models based on reinforcement learning.

* Lin Wan is the corresponding author (e-mail: wanlin@hust.edu.cn).
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However, the generation of realistic frames is a challenging task, especially
when it is required to generate the whole foreground/background and unambigu-
ous motion dynamics. Intuitively, for the sake of obtaining accurate prediction
under the precondition of realistic generation, one has to delve deeper into pre-
vious adjacent frames. Some existing methods directly generate future frames
by encoding context information using generators like CNNs [20], LSTM [3/[18]
Auto-Encoder [23] or GANs [I6l2120028]. Unfortunately, those methods often
suffer from blurry problem. To alleviate the issue, a more elegant method is
to introduce a motion field layer under the assistance of auxiliary information.
Those layer can produce motion dynamics, which transform pixels from previous
frames to future frames [I7]. practical end-to-end fashions [27UI6] usually incor-
porate auxiliary information such as optical-flow, skeleton-information through
neural networks. They acquire complete clear frames from combination of the
previous frames and auxiliary information. Nevertheless, complicated loss to con-
trol the matrix transformation is ineluctable when most of above models aim at
transform the given frames to future frames. Following this inspiration, guid-
ing by an efficient auxiliary information is the keystone and a easier implement
method is better. Consequently, we aim at developing a better “guider” that
predicts future more accurately and relieve the blurry problem.

To acquire this better guider, we resort to a strong motion information
map, the Inter-Frame Difference Image. In particular, we propose the Differ-
ence Guided Generative Network(DGGAN) model that learns to generate the
predicted frames and the difference frames which encode the difference between
adjacent frames. To get over the hurdle of blurry problem, we deploy the pre-
dicted inter-frame difference as the guider for future frame prediction. Combining
the guider with the previous frames, in that way we can apply pixel-shift from
prior distributions instead of generating images from random-noise. the proposed
model finally obtains the future frames with fine details and proper smoothness.
Our end-to-end trainable model deploying this strategy achieves the state-of-
the-art performance on multiple video benchmark datasets without complicated
computing on transformation.

In summary, our main contributions are three-folds:

— We proposed DGGAN model which can generate inter-frame difference im-
age and complete future frame. In single future image prediction, DGGAN
achieve the state-of-the-art on UCF-101, KITTT.

— Inter-frame difference is a neglected powerful guider in motion video analysis.
To our best knowledge, we are the first to introduce it into future prediction
where the guider compels motion information become dominant.

— Learning from [4J2] we propose a multi-stage model which will lessen the
mistiness after single stage. And we experimentally demonstrated that our
Refine Network is efficacious on improving the coarse prediction generated
by GAN.
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Fig. 1. Overview of Difference Guide Generative Adversarial Network (DGGAN). The
Coarse Frame Generator generates the coarse result of T'41 frame, p;. Difference Guide
Generator generates the difference image di of Ir4+1 and Ir. During stage-I1, p1 will be
concatenated with It ”@&” by di and then input to Refine Network where ”@” means
pixel-wise sum. A discriminator will adversarial train the Refine Network to output
the final result 1 which is the fine prediction of T'+ 1 frame.

2 Related works

Video prediction has been more popular since it can be used in various of areas
including self-driving, medical monitoring, or robotics. One way to make a simple
prediction is predicting the future frames. Subsequently we will introduce some
prominent existing Network Architectures for future frames prediction.

Video frame prediction is a challenging task due to the complex appear-
ance and motion dynamics of natural scenes. Early approaches only use the
RGB-frames [3/I8] as input information, using CNN, RNN or LSTM to handle
multi-frames input, and generate at least one future frame. Further notice, as
Generative Adversarial Networks [7] showing good performance compared with
traditional generating works, [20/T6l2822] utilize GANs to achieve better gen-
eration. To obtain more effective information from previous scenario, they also
take low-level features such as optical flows or separating the foreground and
background as auxiliary information.

A series of works above attempt to propose more effective networks to gener-
ate the future frames pixel directly. But the output is often blurry and training
is costly, which usually spends a long time. An alternative approach to alleviate
those problems is copying pixels from previous frames [16/23[13I27]. Patraucean
et al. [23] use optical flows to encode a grid to transform the front one frame
to the next one frame [23]. And the work of Jin et al. [13] define a Voxel Flow
which is coded from the previous frames to transform the front frames to the
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new one. Liang et al. [16] use a dual Motion GAN to generate optical flow and
frames, they make use of the optical flow to warp the last one frame from the
input frame-sequences to the next new one frame. At the same time, they use the
generated frame connected with the last one frame to encode optical flow. They
have two discriminators, which are used to control the generating of optical flow
and frames [16]. Xiong et al. [30] apply multiple GANSs on raw frames for gener-
ation and refinement. Although most of the aforementioned networks have good
performance when predicting future frames, they may suffer from sophisticated
transformation and need complicated loss for controlling the images generation.
Another contemporary model of Liang villegas. make use of the fusion of skele-
ton and previous adjacent frames instead of sophisticated transformation and
need complicated loss. But the limitation of this model is that it can be only
utilized for the prediction of foreground including different human actions, and
the variation of background is hard to predict. Zhao et al. [31] use highly spe-
cific motion information such as 3DMM based face expression motion and human
body keypoints motion for face and human video generation. In this sense, their
method [31] is cumbersome than as it needs to manually select motion cues for
generating videos of different themes.

Our networks makes full use of the advantages of the above model and avoids
their weakness as much as possible. Our approach exploit simple loss to make the
machine learn the coarse predicted frame and Difference Guide(DG) information
which contain the variation of foreground and background from the previous
frames to the new frames. Then the fusion of DG and previous adjacent frames
can help getting over the problem of blurry. In addition our ultimate prediction
is refined via GANs. To achieve more stable and superior training results, we
use WGAN-GP [§] in combination with CGAN [21] instead of original GANs.

3 Difference Guided GAN

As mentioned above, predicting clear and accurate future frames has been at-
tracting lots of attention. Though several works begin to employ various credible
auxiliary information as the guide [23[2212716], their performance is still not
satisfactory. In this work, as shown in Figure [l} we devise a multi-stage genera-
tive network based on a better guide—the difference image, to effectively over-
come their limitations. Concretely, during stage-I, we introduce the dual-path
networks—one path contains the Coarse Frame Generator and the other one
contains the Difference Guide Generator. The upper path generates the coarse
result of future predicted frame while the lower path generates the difference im-
age between last frame and predicted frame which we regard it as the guide. To
adequately learn the context, we set multi-frames as the input sequence. where
the recent frames will serve as constraints. Besides, we use additional losses
to constrain the generation of difference image and coarse predicted frame. At
stage-1I, the coarse predicted frame, difference image and last frame will be fused
by Refine Network. There is a discriminator that adversarially trains the Refine
Network to enhance reality of the synthetic image. Reasons for this design are:
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Fig. 2. Frameworks of generators. Firstly, the sampled frames sequence of length T are
contacted together, where each frame contain 3 channels. There are two input paths
that identical sequence is fed into Coarse Frame Generator(CFG) and Difference Guide
Generator(DGG) simultaneously. The CFG and DGG have the same structure which
includes three convolutional layers, three res-block layer, and three deconvolutional
layers. But the different generation target that produce Coarse Frame G. and Difference
Image G4 respectively. Then pixel-wise adding G4 and IT to get Ga. G4, G will be
fed into Refine Network(RN). Finally, the RN refine those afferent features to ultimate
accurate prediction G,.

(1) difference image compels motion information become dominant; (2) under
the guidance of difference motion information, we could refine our obscure re-
sults. In this way, we could get clear and accurate predicted image.

3.1 Coarse Frame Generator

As shown in Fig. 1} the Coarse Frame Generator(CFG) in the upper path predicts
coarse information in future frames. CFG is structurally similar to the Transform
Net in [14], which contains an encoder, a res-network and a decoder. The encoder
contains three convolution layers, each of which is followed by a Batch-norm
layer [I1] and a LeakyReLU [I9] layer. In contrary to encoder, the decoder
has three deconvolution layers, and all the convolution or deconvolution layers
utilize 4x4 filters and stride 2 to process input feature maps. At the end of
decoder, we add tanh activation function for normalization. More formally, let
S;r = {1, I5,...,Ir} denotes the input sequence of T frames and Ir;; denotes
the future frame. After encoder, we can get features O1 = feony(Sr). With only
three convolution layers, O; is a poor representation in such a difficult task. As
each S; contains consecutive frames which may include the same I;, such as
Sy ={h,I,...,Ir} and S = {I2,Is,...,I74+1}. Besides, each I; have similar
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Fig. 3. Frameworks of discriminator. Taking I741 or G, contacted with It
as input.

features. Thus if we deepen the net, inconspicuous variation in consecutive frames
may cause the gradient vanishing in training phaze. Under these circumstances,
we insert the res-networks [9] between the encoder and decoder. The res-networks
include three residual blocks and each block contains three convolution layers
which use simple 1x1 filters and stride 1 to process input feature maps., followed
by a Batch-norm layer [11] and a ReLU. When passing through the blocks,
we can get feature maps Oy = fr.es(O1) where fres(O1) = F(O1,{Wi}) + Os.
Deconvolution layers in decoder will then up-sample Os to be the same size with
input frames. In a nutshell, the CFG learns to produce coarse predicted frame
G.

At this stage, we simplify the awkward task that we don’t need to predicted
the ultimate clear and realistic frame in one step. At the beginning, DGGAN
only need to learn to fit the distribution of raw data. The fitting is important for
providing structural information for our last refined prediction. There, we use
the Mean Square Error(MSE) loss function to train the CFG:

Lop(GeyIrn) = Y (Geli) = Iraa (7)) (1)

iel

where G.(7) and It (i) means the i-th pixel value of coarse predicted frame G.
and real predicted frame Ipyq.

3.2 Difference Guide Generator

In the lower path, the inter-frame difference is generated by Difference Guide
Generator(DGG). As it shown in Fig. 3 the identical input S; = {1, Ia, ..., I}
have two paths, lower of which will then be processed by the encoder and de-
coder of DGG. As for the encoder and decoder, DGG and CFG share the same
structure. What distinguishes them is the different learning objective that target
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of DGG is generating Difference Image. First of all, we need to get real difference
image ﬁ, where ﬁT = Ipy1 — Ip. Through the DGG, we obtain the predicted
difference image GG4. Generating this sparse image G is an easier task compared
to generating realistic image which is dense. Thus, we introduce the L; loss to
constrain the generation which outperform the MSE Loss when dealing with the
generation of sparse image:

Dr (i)
2

Lig(Ga,Dr) = >

i€ D

Gali) — (2)

where Gy(i) and Dp(i) denote the i-th pixel value of generated difference image
sequences (Gg and real difference image sequence Dr. Note that we take tanh
activation function to normalize our output, but the ground-truth of difference
image Dy is between [—2,2]. So we divide Dy by factor 2 to nondimensionalize
the Dy. Difference image plays a guide role in the following stage. Contrary to
generating predicted frames directly, generating the sparse motion information
is easy to converge. This well-trained information will guide coarse prediction to
produce more accurate result.

For stage-1, the CFG and DGG generate coarse predictions G and difference
images G4 respectively at each time step. A MSE penalty item constrains the
CFG and L; penalty item constrains the DGG. In summary, the holistic penalty
of stage-I is: )

Estage—[ = ch(Gca IT+1) + ﬁd!](de DT) (3)

From the @, it suggests that CFG and DGG are synchronously trained under
their own objective. The targets of stage-I are making coarse result approach to
the future frame and generating more accurate difference image.

3.3 Refine Network

After stage-1, we can obtain coarse predicted frame G, and difference guide Gg.
As “@” shown in Figure [3] the guide G4 pixel-wise plus I will synthesize the
guided image I where jT+1 =Gy x2+ Ir.

Coarse predicted frame G, have blurry problems which is far short of gen-
erating the realistic images. On the other side, I of combining the difference
image and previous adjacent frame directly have abundant artifacts. Thus we
define a Refine Network(RN) in stage-II to smooth the predicted frame. It has
the analogic function with Auto-Encoder which learns to compress data from
the input layer into a compact code, and then recover the original data from the
code. To fuse the frame fT and G4, we set the guide as a condition. They are
taken as the input of RN. RN merely has a simple structure which consists of
three convolutional layers and three deconvolutional layers.

We add Batch-Norm layer and a LeayReLU layer following the convolution
and deconvolution layer. And at the last output, we use tanh activation function
to normalize. After RN, the coarse prediction G, will be refined to a high visual
quality prediction G, with reduced blurriness or artifacts.
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3.4 Adversarial Training

Since the GANs [7] has achieved tremendous success on generating of realistic
images, we adopt GAN-based training strategy to refine our coarse results. As
the original GAN suffers from several training difficulties such as mode collapse
and instable convergence. In DGGAN, we adopt WAGN-GP [§] as our learning
tactic. The WAGN-GP theoretically solve problems of original GAN mentioned
before by minimizing an approximated Wasserstein distance and remedy the
limitation of weight clipping about WGAN via the utilization of more advanced
gradient penalty. In order to attain the goal of predicting, we also control our
generation with the restrictions of given information like the principle of CGAN.
As the Difference Image to be a condition guiding the generating, that’s why we
call Difference guide. As shown in Figure|l] discriminator(D Net) located at the
end of model is used for training the refined results. D Net has five convolutional
layers with 4x4 filters and stride 2 to process input feature maps and one fully
connection layers. Follow the WGAN-GP [8], we use layer-norm layer instead of
batch-norm layer.

Training of the discriminator. when traing the discriminator, we regard
the refined output G, stacked with last frame I as negative example where the
Ir is the condition. Analogously, we can get positive example by concatenate
real image Iry; with Ip. The optimization objective of discriminator can be
written as:

L =Erp(Gri10)[D(1)] = Erop(rpg 10y [D()]

4
+ ABs, (Ve D(@)]|2 — 1)°] W

where the P(I741|I7) is the distributions of real future frames in combination
with conditions, the P(Gr|Ir) is the distributions of synthesized prediction in
combination with conditions, 2 is the random samples between I and G, and
A is the coefficient. Z helps us to circumvent tractability issues by enforcing such
a soft version of the constraint with a penalty on the gradient norm which lessen
the distraction and burden from generating realistic images.

In this way, our discriminator learn to distinguish the ground-truth and re-
fined generation with the condition of previous adjacent frame.

Training of the RN. Contrary to discriminator, we regard the refined
output G, stacked with last frame I as positive input. keeping the weights of
D fixed, and we perform an optimization on RN:

LEN = B, pGri1)[D(r)] (5)

By minimizing the above two loss criteria (4), (5), RN trying to confuse the
generated frames and real future frames. Meanwhile the the ability of D that
distinguish the synthesized frames and the real future frames is promoting. At
last, the D can no longer make sure the source of input frames, and the output
prediction of RN will be realistic to the real future frames.

In summary, the optimization target of stage-II is:

l:stage—II = [-:RN + [fD (6)

adv adv
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3.5 Multi-frame Generation

Our model can be competent at Multi-frame Generation. We take the generated
frame G,; combined with previous {Is, ..., I741} as the new input sequence, then
use it to generated ro which is closed to real-frame I 5. By repeating the above
operation, we can acquire a sequence of frames S, = {G,1, G2, ..., Grn } Wwhere n
is the length of multi-frames. Because all the following prediction are influenced
by the first frame prediction, our main target is making the one-frame prediction
as accurate as possible.

4 Experiments

4.1 Experimental Set-up

Datasets. We evaluate our proposed model in three different real-world scenar-
ios, UCF-101 dataset [26], KITTI dataset [6] and Human 3.6M dataset [12]. The
UCF-101 dataset, which contains 13320 annotated videos, include many human’s
activities. It was split to three subsets. We take the first subset as our training
set and testing set. In KITTT dataset, it includes many driving-scenarios from
different road conditions. Training set and testing set are from two categories:
road and cars. Human 3.6M dataset is formed by various videos which consists of
plentiful motions of humans. We extract these video to frames as well. In those
dataset, to produce examples, we extracted every 5 continuous frames each step.
We give the front four frames as input, and then try to predict the next one
frames which is similar to the last one. The data patches are firstly normalized
to the range [-1:1] so that their values are equal to the generation interval of
tanh.

Quality evaluation. To quantify the comparison with State-of-the-Art meth-
ods, we use Structural Similarity Index(SSIM) [29], Mean Squared Error(MSE) [1§]
and Peak Signal-to-Noise Ratio(PSNR) [10] evaluation prototypes to assess the
image quality of the results. SSIM is used for measuring the similarity between
two images and higher value of SSIM means better accuracy of predicting. The
MSE represents the quality of predicted frames. It is always non-negative and
value closer to zero is better. PSNR is similar to MSE, which can assess approx-
imation to human perception of reconstruction quality, and higher value means
better results.

Training details We use the Adam [I5] to optimize DGGAN at the batch-
size of 8 in both two stages. In stages-I, Both CFG and DGG use the same
learning rate which is set to 0.001 and gradually decreased to 0.0001 over time.
It takes about 100epochs to reach convergence.

In stage-II, keeping the weight of that networks in stages-I fixed, the learning
rate about Refine Network and the discriminator is set to 0.0001 and gradually
decreased to 0.00001 over time. It takes about 200 epochs to reach convergence.
We also set the weighting parameter A = 10 in L

adv*
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4.2 Comparison with the State-of-the-Art

As shown in Table we list our results and other State-of-the-Art approaches
in detail.

Comparison on UCF-101. Firstly, We assess our model on UCF-101. We
equally spaced sample from videos and choose examples from part-one as train
and test datasets. The frames are resized to 128 x128. Table[I]displays the results
compared with other methods.

We take the one-frame prediction experiment results illustrated in Deep
Multi-stage(DMS) [2]. For multi prediction setting, there is no data reported
in [I7].

Note that in single-frame prediction, our network surpasses the state-of-the-
art comprehensively and transcends Deep Voxel Flow(DVF) 2% on SSIM and
10.6 on PSNR. For second frame prediction, DGGAN transcends the state-of-
the-art 2%, 5.6 on SSIM, PSNR respectively. To our knowledge, we have achieved
the state-of-the-art on UCF-101 on these two different settings. In another point,
our approach is similar to DVF who generates a motion information(Voxel Flow)
to guide the input frames. But DGGAN guiding by Difference shows the better
performance than DVF. That’s we think Difference has a stronger lead than
Vodel Flow.

[Method |GAN[SSIM(2nd frame)[PSNR(2nd frame)]
BeyondMSE 20]] v/ 0.92(0.89) 32(28.9)
DVF [17] X 0.96(-) 35.8(-)
*DMS [2] Vv 0.95(0.93) 38.2(36.8)
Ours v | 0.98(0.95) 46.4(42.3)

Table 1. Comparison of performance for different methods using SSIM/PSNR scores
for the UCF-101. Value in “()” means score of second frame ry. ”*” This score is
provided by [2] which predicted four frames once a time, but we only compare with
the first frame of it. ”4/” means the model based on GAN.

Comparison on KITTI. Secondly, we assess our model by training on
the KITTI dataset and testing on the CalTech Pedestrian dataset from ”city”,
”Residential”, and "Road”. Frames from both datasets are center-cropped and
down-sampled to 128x160 pixels. Different from previous dataset, the KITTI
dataset have obvious background pixels changing. Nonetheless, our model can
be capable of the prediction task. Table |2| shows all the consequence compared
with other methods. All the score are provided by the Dual Motion Gan(DMG)
[16]. Our model excess BeyondMSE [20], PredNet [I7] and DMG [16] on SSIM.
On MSE, we also have the minimum error. In particularly, compared with DMG
which take optical flow as ”guider”, the results confirm the superiority of dif-
ference image. More intuitive performance are shown in Figure [d In spite that
KITTI has greater variation between frames, we still anticipate the precise posi-
tion about streetlight, cars and windows. And in comparison with Beyond MSE,
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T-1 T T+1 Ours BeyondMSE

Fig. 4. Results in KITTI. From column 1-3 are past frames 7T'— 1, T and ground truth
of frame T4 1. Column 4 in blue is our prediction of frame 7"+ 1. Column 5 in blue is
the result of BeyondMSE [20]. These three narrow columns in red are zoom in details
of the T' 4 1 real frame, our prediction and result of BeyondMSE respectively.

our generated images are clearer significantly, and boost the image quality con-
spicuously.

[Method [SSIM [MSE(x10~7)]
BeyondMSE [20] | 0.881 3.26
PredNet [17] 0.884 3.13
DMG [16] 0.899 2.41
Ours 0.902 2.18

Table 2. Comparison of different methods using SSIM/MSE scores for the KITTI.

Comparison on Human 3.6M. We assess our model in Human 3.6M at
last. We extract frames from video and choose 100000 frames which contain a
mass of consecutive motions randomly as the training set, and we take 10%
of entire dataset as testing set. All of frames are down-sampled to 64x64. As
seen in Table [3] it reports the quantitative comparison with the state-of-the-
art methods from BeyondMSE [20], DNA [5] and Full Context(FC) [3]. We
re-implement the result of BeyondMSE according to [20] that minimizes the loss
functions in BeyondMSE(ADV+GDL) under the same setting with our model.
And the result about DNA and FC refer to the the experimental results shown
in their papers. Since the dynamic regions in Human 3.6M are the central human
movings, and usually the background is static, the difference guide have shown
improvement in local variation of pixels. Under the guiding of it, our model
significantly outperform BeyondMSE. And because DNA and FC need ten frame
as input but our model just use four frame as input, we can also compete within
them in a comprehensive way.
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[Method | SSIM [PSNR}
BeyondMSE [20]| 0.90 | 26.7
DNA [5] 0.992 | 42.1
FC [3] 0.996| 45.2
Ours 0.990| 44.1

Table 3. Comparison of different methods using PSNR/SSIM scores for the Human
3.6M.

T+1 CFGAN DGN DGGAN PDI

Fig. 5. Visual presentation of one-frame prediction on Human 3.6M. From left to right
are ground truth of frame T+1, results of Coarse Frame Generative Adversarial Net-
work(CFGAN), Difference Guided Net(DGN), our proposed model(DGGAN) and Pre-
dicted Difference Image(PDI).

4.3 Evaluation on effectiveness

In order to evaluate our model, we set three baselines to prove the effective-
ness of DGGAN in Table @ In general, the copy of last frame Iy (Copy) is a
significant reference. Without the guide, we append a discriminator to upper
path which only contains the CFG as the second baseline named Coarse Frame
Generative Adversarial Network(CFGAN). For third baseline, we directly ap-
ply the guide G4 into the last frame Ir to generate the prediction. There is a
striking enhancement when comparing the Copy(Row 1) and DGN(Row 3). Ac-
cordingly, the difference image’s intrinsic motion guidance is ideally suited for
future prediction.

Drill down further to analysis the Table [4] the gap between DGGAN and
CFGAN tells that multi-stage and dual path GAN is more effective than plain
GAN. Especially on KITTI, conspicuous variation between inter-frames, copying
pixels from last frame(Row 1) have a poor performance than DGN(Row 3) that
indicates it is vital to utilize motion guider. Furthermore, DGGAN also exceeds
three benchmarks on all the evaluation indexes. The results of these contrast
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T+1 CFGAN DGN DGGAN PDI

N 8
N0

Fig. 6. Visual presentation of one-frame prediction on KITTI. The label means the
same thing as Fig[f|

Table 4. Comparisons of our ultimate network with other two path methods in stage-I
on Human 3.6M, UCF-101 and KITTI. The order of magnitude in ”MSE” column is
(x1073) .

Model Human 3.6M UCF-101 KITTI
SSIM  PSNR MSE SSIM PSNR MSE SSIM PSNR MSE
Copy 0.90 - - 0.80 - - 0.67 - -
CFGAN 0.87 29.4 3.9 0.89 31.5 4.2 0.79 28.4 5.26
DGN 0.97 41.6 2.1 0.96 44.7 2.9 0.86 35.6 2.9

DGGAN 0.99 44.1 1.8 0.98 46.4 2.4 0.90 37.5 2.1

experiments illustrate that our proposed DGGAN has a reasonable structure.
Both on guiding the motion information prediction and refining the synthetic
image, DGGAN has shown its potential and superiority in this field.

More Intuitive performance are shown in Fig Owing to the hard task
that CFGAN need to generate the whole future frames directly, it’s inevitable
that generated frames are a bit blurry. on the contrary, our DGGAN focus on the
variations between inter-frames under the guide of difference images and show
better performance on generation. Beyond that, the similarity of Real Difference
Image(PDI) and Predicted Difference Image(PDI) show the validity of task that
using L1 loss to control the generation of sparse difference image. In addition, as
we can see, the use of difference images directly will produce the images with lots
of artifact. and the RN can solve this problem by refining the images effectively.
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P

T+1 CFGAN DGN DGGAN PDI RDI

7

Fig. 7. Visual presentation of one-frame prediction on UCF-101. The label means the
same thing as Fig Besides, Real Difference Image(PDI) means the ground truth of
difference image between I and Ir41

5 Conclusion

In future prediction, we proposed a novel and reasonable methodology, Difference
Guide Generative Adversarial Network(DGGAN). This method can refine the
synthetic predicted image under the guiding of difference image. Although recent
works provide plenty of alternative strategies such as leveraging optical flow to
guide the prediction. DGGAN still stands out through a better guide. To explore
effectiveness of DGGAN, we conducted a serials of experiments on comparing the
state-of-the-art and our benchmarks. As we expected, DGGAN experimentally
and theoretically demonstrated its excellent capacity which could be further
applied to action analysis and video generation.
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