Skip to main content

Common Self-polar Triangle of Concentric Conics for Light Field Camera Calibration

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Abstract

Accurate light field camera calibration plays an important role in various applications. Instead of a planar checkerboard, we propose to calibrate light field camera using a concentric conics pattern. In this paper, we explore the property and reconstruction of common self-polar triangle with respect to concentric circle and ellipse. A light field projection model is formulated to compute out an effective linear initial solution for both intrinsic and extrinsic parameters. In addition, a 4-parameter radial distortion model is presented considering different view points in light field. Finally, we establish a cost function based on Sampson error for non-linear optimization. Experimental results on both synthetic data and real light field have verified the effectiveness and robustness of the proposed algorithm.

Supported by NSFC under Grant 61531014.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Birklbauer, C., Bimber, O.: Panorama light-field imaging. In: Computer Graphics Forum, vol. 33, pp. 43–52. Wiley Online Library (2014)

    Google Scholar 

  2. Bok, Y., Jeon, H.-G., Kweon, I.S.: Geometric calibration of micro-lens-based light-field cameras using line features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 47–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_4

    Chapter  Google Scholar 

  3. Bok, Y., Jeon, H.G., Kweon, I.S.: Geometric calibration of micro-lens-based light field cameras using line features. IEEE T-PAMI 39(2), 287–300 (2017)

    Article  Google Scholar 

  4. Canny, J.: A computational approach to edge detection. In: Readings in Computer Vision, pp. 184–203. Elsevier (1987)

    Google Scholar 

  5. Dansereau, D.G., Mahon, I., Pizarro, O., Williams, S.B.: Plenoptic flow: closed-form visual odometry for light field cameras. In: IEEE IROS, pp. 4455–4462 (2011)

    Google Scholar 

  6. Dansereau, D.G., Pizarro, O., Williams, S.B.: Decoding, calibration and rectification for lenselet-based plenoptic cameras. In: IEEE CVPR, pp. 1027–1034 (2013)

    Google Scholar 

  7. Dong, F., Ieng, S.H., Savatier, X., Etienne-Cummings, R., Benosman, R.: Plenoptic cameras in real-time robotics. IJRR 32(2), 206–217 (2013)

    Google Scholar 

  8. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)

    Google Scholar 

  9. Guo, X., Yu, Z., Kang, S.B., Lin, H., Yu, J.: Enhancing light fields through ray-space stitching. IEEE T-VCG 22(7), 1852–1861 (2016)

    Google Scholar 

  10. Hartley, R.: Self-calibration of stationary cameras. IJCV 22(1), 5–23 (1997)

    Article  Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  12. Huang, H., Zhang, H., Cheung, Y.M.: The common self-polar triangle of concentric circles and its application to camera calibration. In: IEEE CVPR, pp. 4065–4072 (2015)

    Google Scholar 

  13. Huang, H., Zhang, H., Cheung, Y.M.: Homography estimation from the common self-polar triangle of separate ellipses. In: IEEE CVPR, pp. 1737–1744 (2016)

    Google Scholar 

  14. Jeon, H.G., et al.: Accurate depth map estimation from a lenslet light field camera. In: IEEE CVPR, pp. 1547–1555 (2015)

    Google Scholar 

  15. Johannsen, O., Heinze, C., Goldluecke, B., Perwaß, C.: On the calibration of focused plenoptic cameras. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.) Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. LNCS, vol. 8200, pp. 302–317. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44964-2_15

    Chapter  Google Scholar 

  16. Johannsen, O., Sulc, A., Goldluecke, B.: On linear structure from motion for light field cameras. In: IEEE ICCV, pp. 720–728 (2015)

    Google Scholar 

  17. Kim, J.S., Gurdjos, P., Kweon, I.S.: Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE T-PAMI 27(4), 637–642 (2005)

    Article  Google Scholar 

  18. Levoy, M., Hanrahan, P.: Light field rendering. In: ACM SIGGRAPH, pp. 31–42 (1996)

    Google Scholar 

  19. Liebowitz, D.: Camera calibration and reconstruction of geometry from images. Ph.D. thesis, University of Oxford (2001)

    Google Scholar 

  20. Lytro: Lytro redefines photography with light field cameras (2011). http://www.lytro.com

  21. Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for Non-linear Least Squares Problems, 2nd edn. Informatics and Mathematical Modelling, Technical University of Denmark, Kongens Lyngby (2004)

    Google Scholar 

  22. Ng, R.: Fourier slice photography. ACM TOG 24(3), 735–744 (2005)

    Article  Google Scholar 

  23. Ng, R.: Digital light field photography. Ph.D. thesis, Stanford University (2006)

    Google Scholar 

  24. Quan, L., Gros, P., Mohr, R.: Invariants of a pair of conics revisited. In: Mowforth, P. (ed.) BMVC 1991, pp. 71–77. Springer, London (1991). https://doi.org/10.1007/978-1-4471-1921-0_10

    Chapter  Google Scholar 

  25. Raytrix: 3D light field camera technology (2013). http://www.raytrix.de

  26. Ren, Z., Zhang, Q., Zhu, H., Wang, Q.: Extending the FOV from disparity and color consistencies in multiview light fields. In: Processing ICIP, pp. 1157–1161 (2017)

    Google Scholar 

  27. Si, L., Wang, Q.: Dense depth-map estimation and geometry inference from light fields via global optimization. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 83–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_6

    Chapter  Google Scholar 

  28. Springer, C.E.: Geometry and Analysis of Projective Spaces, vol. 68. Freeman, New York (1964)

    MATH  Google Scholar 

  29. Thomason, C., Thurow, B., Fahringer, T.: Calibration of a microlens array for a plenoptic camera. In: AIAA, pp. 1456–1460 (2014)

    Google Scholar 

  30. Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using plane + parallax for calibrating dense camera arrays. In: IEEE CVPR, pp. 2–9 (2004)

    Google Scholar 

  31. Wang, T.C., Efros, A.A., Ramamoorthi, R.: Depth estimation with occlusion modeling using light-field cameras. IEEE T-PAMI 38(11), 2170–2181 (2016)

    Article  Google Scholar 

  32. Wanner, S., Goldluecke, B.: Globally consistent depth labeling of 4D light fields. In: IEEE CVPR, pp. 41–48 (2012)

    Google Scholar 

  33. Xiao, Z., Wang, Q., Zhou, G., Yu, J.: Aliasing detection and reduction scheme on angularly undersampled light fields. IEEE TIP 26(5), 2103–2115 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, C., Ji, Z., Wang, Q.: Rectifying projective distortion in 4D light field. In: IEEE ICIP (2016)

    Google Scholar 

  35. Zhang, Q., Zhang, C., Ling, J., Wang, Q., Yu, J.: A generic multi-projection-center model and calibration method for light field cameras. IEEE T-PAMI (2018). https://doi.org/10.1109/TPAMI.2018.2864617

  36. Zhang, Y., Li, Z., Yang, W., Yu, P., Lin, H., Yu, J.: The light field 3D scanner. In: IEEE ICCP, pp. 1–9 (2017)

    Google Scholar 

  37. Zhang, Y., Yu, P., Yang, W., Ma, Y., Yu, J.: Ray space features for plenoptic structure-from-motion. In: IEEE ICCV, pp. 4631–4639 (2017)

    Google Scholar 

  38. Zhu, H., Wang, Q., Yu, J.: Occlusion-model guided anti-occlusion depth estimation in light field. IEEE J-STSP 11(7), 965–978 (2017)

    Google Scholar 

  39. Zhu, H., Zhang, Q., Wang, Q.: 4D light field superpixel and segmentation. In: IEEE CVPR, pp. 6709–6717 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q., Wang, Q. (2019). Common Self-polar Triangle of Concentric Conics for Light Field Camera Calibration. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics