Skip to main content

Continuous-Time Stereo Visual Odometry Based on Dynamics Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Abstract

We propose a dynamics model to represent the camera trajectory as a continuous function of time and forces. Equipped with such a representation, we convert the classical visual odometry problem to analyzing the forces applied to the camera. In contrast to the classical discrete-time estimation strategy, the continuous nature of the camera motion is inherently revealed in the framework, and the camera motion can be simply modeled with only few parameters within time intervals. The dynamics model guarantees the continuous velocity, and hence assures a smooth trajectory, which is robust against noise and avoiding the pose vibration. Evaluations on real-world benchmark datasets show that our method outperforms other continuous-time methods.

This work is supported by the National Natural Science Foundation of China (61632003, 61771026), and National Key Research and Development Program of China (2017YFB1002601).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal, S., Mierle, K., et al.: Ceres Solver (2012). http://ceres-solver.org

  2. Caruso, D., Engel, J., Cremers, D.: Large-scale direct SLAM for omnidirectional cameras. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 141–148 (2015)

    Google Scholar 

  3. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  4. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  5. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  6. Engel, J., Stückler, J., Cremers, D.: Large-scale direct SLAM with stereo cameras. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1935–1942 (2015)

    Google Scholar 

  7. Furgale, P., Barfoot, T.D., Sibley, G.: Continuous-time batch estimation using temporal basis functions. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2088–2095 (2012)

    Google Scholar 

  8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)

    Google Scholar 

  9. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: Intelligent Vehicles Symposium (2011)

    Google Scholar 

  10. Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2100–2106 (2013)

    Google Scholar 

  11. Kerl, C., Stückler, J., Cremers, D.: Dense continuous-time tracking and mapping with rolling shutter RGB-D cameras. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2264–2272 (2015)

    Google Scholar 

  12. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality, pp. 225–234. IEEE (2007)

    Google Scholar 

  13. Lovegrove, S., Patron-Perez, A., Sibley, G.: Spline fusion: a continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In: Proceedings of British Machine Vision Conference, pp. 1–12 (2013)

    Google Scholar 

  14. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  15. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  16. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2320–2327 (2011)

    Google Scholar 

  17. Ovrén, H., Forssén, P.E.: Spline error weighting for robust visual-inertial fusion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–12 (2018)

    Google Scholar 

  18. Qin, T., Li, P., Shen, S.: VINS-mono: a robust and versatile monocular visual-inertial state estimator. arXiv preprint arXiv:1708.03852 (2017)

  19. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  20. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  21. Schops, T., Engel, J., Cremers, D.: Semi-dense visual odometry for AR on a smartphone. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality, pp. 145–150 (2014)

    Google Scholar 

  22. Sola, J.: Quaternion kinematics for the error-state Kalman filter. arXiv preprint arXiv:1711.02508 (2017)

  23. Wang, R., Schworer, M., Cremers, D.: Stereo DSO: large-scale direct sparse visual odometry with stereo cameras. In: Proceedings of IEEE International Conference on Computer Vision, pp. 3923–3931 (2017)

    Google Scholar 

  24. Yang, N., Wang, R., Stückler, J., Cremers, D.: Deep virtual stereo odometry: leveraging deep depth prediction for monocular direct sparse odometry. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 835–852. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_50

    Chapter  Google Scholar 

  25. Younes, G., Asmar, D., Shammas, E., Zelek, J.: Keyframe-based monocular SLAM: design, survey, and future directions. Rob. Auton. Syst. 98, 67–88 (2017)

    Article  Google Scholar 

  26. Zhou, H., Zou, D., Pei, L., Ying, R., Liu, P., Yu, W.: StructSLAM: visual SLAM with building structure lines. IEEE Trans. Veh. Technol. 64(4), 1364–1375 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Hongbin Zha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Xue, F., Yan, Z., Dong, W., Wang, Q., Zha, H. (2019). Continuous-Time Stereo Visual Odometry Based on Dynamics Model. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics