Skip to main content

Dynamic Gated Graph Neural Networks for Scene Graph Generation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

We describe a new deep generative architecture, called Dynamic Gated Graph Neural Networks (D-GGNN), for extracting a scene graph for an image, given a set of bounding-box proposals. A scene graph is a visually-grounded digraph for an image, where the nodes represent the objects and the edges show the relationships between them. Unlike the recently proposed Gated Graph Neural Networks (GGNN), the D-GGNN can be applied to an input image when only partial relationship information, or none at all, is known. In each training episode, the D-GGNN sequentially builds a candidate scene graph for a given training input image and labels additional nodes and edges of the graph. The scene graph is built using a deep reinforcement learning framework: states are partial graphs, encoded using a GGNN, actions choose labels for node and edges, and rewards measure the match between the ground-truth annotations in the data and the labels assigned at a point in the search. Our experimental results outperform the state-of-the-art results for scene graph generation task on the Visual Genome dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017)

  2. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

  3. Bojchevski, A., Shchur, O., Zügner, D., Günnemann, S.: NetGAN: generating graphs via random walks. arXiv preprint arXiv:1803.00816 (2018)

  4. De Cao, N., Kipf, T.: MolGAN: an implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018)

  5. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212 (2017)

  8. Girshick, R.: Fast R-CNN. arXiv preprint arXiv:1504.08083 (2015)

  9. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 2, pp. 729–734. IEEE (2005)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  11. Johnson, J., et al.: Image retrieval using scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3668–3678 (2015)

    Google Scholar 

  12. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3128–3137 (2015)

    Google Scholar 

  13. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. arXiv preprint arXiv:1602.07332 (2016)

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Li, Y., Ouyang, W., Zhou, B., Wang, K., Wang, X.: Scene graph generation from objects, phrases and region captions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1261–1270 (2017)

    Google Scholar 

  16. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)

  17. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.: Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324 (2018)

  18. Liang, X., Lee, L., Xing, E.P.: Deep variation-structured reinforcement learning for visual relationship and attribute detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4408–4417. IEEE (2017)

    Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  20. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51

    Chapter  Google Scholar 

  21. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  22. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  23. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Bilinear classifiers for visual recognition. In: Advances in Neural Information Processing Systems, pp. 1482–1490 (2009)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  25. Santoro, A., et al.: A simple neural network module for relational reasoning. In: Advances in Neural Information Processing Systems, pp. 4967–4976 (2017)

    Google Scholar 

  26. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: Computational capabilities of graph neural networks. IEEE Trans. Neural Netw. 20(1), 81–102 (2009)

    Article  Google Scholar 

  27. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  28. Schuster, S., Krishna, R., Chang, A., Fei-Fei, L., Manning, C.D.: Generating semantically precise scene graphs from textual descriptions for improved image retrieval. In: Proceedings of the Fourth Workshop on Vision and Language, pp. 70–80 (2015)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Teney, D., Liu, L., van den Hengel, A.: Graph-structured representations for visual question answering. CoRR, abs/1609.05600 3 (2016)

    Google Scholar 

  31. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. CoRR abs/1411.4555 (2014). http://arxiv.org/abs/1411.4555

  32. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2 (2017)

    Google Scholar 

  33. Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044 (2015)

  34. You, J., Ying, R., Ren, X., Hamilton, W., Leskovec, J.: GraphRNN: generating realistic graphs with deep auto-regressive models. In: International Conference on Machine Learning, pp. 5694–5703 (2018)

    Google Scholar 

  35. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. CoRR abs/1603.03925 (2016). http://arxiv.org/abs/1603.03925

  36. Zhu, Y., Fathi, A., Fei-Fei, L.: Reasoning about object affordances in a knowledge base representation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 408–424. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_27

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by a Discovery Grant to the senior author from the Natural Sciences and Engineering Council of Canada. The Titan X GPUs used for this research were donated by the NVIDIA Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Khademi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khademi, M., Schulte, O. (2019). Dynamic Gated Graph Neural Networks for Scene Graph Generation. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics