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Abstract. This paper presents FSNet, a deep generative model for
image-based face swapping. Traditionally, face-swapping methods are
based on three-dimensional morphable models (3DMMs), and facial tex-
tures are replaced between the estimated three-dimensional (3D) geome-
tries in two images of different individuals. However, the estimation of 3D
geometries along with different lighting conditions using 3DMMs is still
a difficult task. We herein represent the face region with a latent variable
that is assigned with the proposed deep neural network (DNN) instead
of facial textures. The proposed DNN synthesizes a face-swapped image
using the latent variable of the face region and another image of the non-
face region. The proposed method is not required to fit to the 3DMM;
additionally, it performs face swapping only by feeding two face images
to the proposed network. Consequently, our DNN-based face swapping
performs better than previous approaches for challenging inputs with
different face orientations and lighting conditions. Through several ex-
periments, we demonstrated that the proposed method performs face
swapping in a more stable manner than the state-of-the-art method, and
that its results are compatible with the method thereof.

Keywords: Face swapping · Convolutional neural networks · Deep gen-
erative models

1 Introduction

Face image editing has become increasingly prevalent owing to the growth of so-
cial networking services and photo-retouching software. To respond to the poten-
tial demand for creating more attractive face images with such photo-retouching
software, many studies have been introduced for a range of applications includ-
ing face image analysis [1–4] and manipulation [5–9] in computer vision and
graphics communities. In such applications, face swapping is an important tech-
nique owing to its broad applications such as photomontage [5], virtual hairstyle
fitting [9], privacy protection [6, 10, 11], and data augmentation for machine
learning [12–14].

As its name indicates, face swapping replaces the face region of a target image
with that in a source image. Traditional approaches [5,15] uses three-dimensional
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Fig. 1. Results of image-based face swapping using our method. In this figure, face
regions of the target images in the left column are replaced with the faces of the source
images in the top row. The supplementary document provides additional results for
other input faces.

morphable models (3DMMs) to estimate face geometries and their corresponding
textures. Subsequently, the textures of the source and target images are swapped
using the estimated texture coordinates. Finally, the replaced face textures are
re-rendered using the lighting condition estimated from the target image. How-
ever, these methods are prone to fail in estimating the face geometries or lighting
conditions in practice. The inaccurate estimations typically cause noticeable ar-
tifacts because human eyes can well detect slight mismatches of these geometries
and lighting conditions.

In contrast to the methods above, several recent studies have applied deep
neural networks (DNNs) to face swapping. Bao et al. [16] proposed a condi-
tional image generation technique using a DNN, known as CVAE-GAN. They
performed face swapping by considering face identities as image conditioners. A
similar technique was used in “FakeApp” [17], an easy-to-use application soft-
ware for image-based face swapping using a DNN. Korshunova et al. [11] consid-
ered face identities as artistic styles in neural style transfer [18], and performed
face swapping by fine-tuning the pre-trained network using a dozens of images
of an individual. Although these approaches facilitated the use of deep-learning
techniques for face swapping, they share a common problem in that the users
must prepare multiple input images of an individual. Meanwhile, Natsume et
al. [19] proposed a DNN for face image editing that only uses a single source
image and a single target image. Even though their method can be applied to



FSNet: An Identity-Aware Generative Model for Image-based Face Swapping 3

a wide range of applications including face swapping, the hair regions of their
face-swapped results are no longer the same as those in the original images.

To address the problems above, we propose FSNet, a novel DNN for image-
based face swapping. The proposed method disentangles face appearance as a
latent variable that is independent of the face geometry and the appearance of
the non-face region, including hairstyles and backgrounds. The latent variables
for the two face appearances of two input images are swapped, and are combined
with the latent variables for the non-face parts of the counterpart images. Once
the network of FSNet is trained using a large-scale face image dataset, FSNet
does not require any additional fine-tuning and performs face swapping only
with a single source image and a single target image. As shown in Fig. 1, the
faces are swapped appropriately in that face identities in the source images are
preserved well and composed naturally with the non-face regions of the target
images. In this study, we evaluated the face-swapping results using a number of
image assessment metrics and demonstrated that FSNet achieves more stable
face swapping than the state-of-the-art methods. In addition to the stability, the
quality of the FSNet results is compatible to the methods thereof. The technical
contributions of FSNet are summarized as follows:

1. It is a new DNN for image-based face swapping that uses only a single source
and a single target images, and does not require any additional fine-tuning.

2. While face swapping, it well preserves both the face identity in a source
image and the appearances of hairstyle and background region in a target
image.

3. It performs high-quality face swapping even for typical challenging inputs
with different face orientations and with different lighting conditions.

2 Related Work

Face swapping has been studied for a range of applications including photomon-
tage [5], virtual hairstyle fitting [9], privacy protection [6, 10, 11], and data aug-
mentation for large-scale machine learning [14]. Several studies [7, 10] have re-
placed only parts of the face, such as eyes, nose, and mouth between images
rather than swapping the entire face. A popular approach for face swapping is
based on the 3DMM [5, 15]. Fitting a 3DMM to a target face yields the face
geometry, texture map, and lighting condition [1, 2]. A face-swapped appear-
ance is generated by the replacement of the face textures and the subsequent
re-rendering of the face appearance using the estimated lighting condition.

The primary drawback of these approaches is the difficulty in the accurate es-
timation of three-dimensional (3D) face geometries and lighting conditions from
single images. The failure estimation often causes noticeable visual artifacts. To
alleviate this problem, Bitouk et al. [6] proposed an image-based face swapping
without the 3DMM. To avoid the estimation of face geometries, they leveraged
a large-scale face database. Their system searches a target image whose layout is
similar to that of a source image. Subsequently, these face regions of two similar
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images are swapped using boundary-aware image composition. A more sophisti-
cated approach was recently proposed by Kemelmacher-Shlizerman [9]. She care-
fully designed a handmade feature vector to represent face image appearances
and improved the accuracy of searching similar faces successfully. However, these
methods do not allow the users to choose both the source and target images;
therefore, they are not applicable to arbitrary face image pairs.

Several recent studies have applied deep neural networks for image-based
face swapping. Bao et al. [16] indicated that their conditional image generation
technique can alter face identities by conditioning the generated images with
an identity vector. Meanwhile, Korshunova et al. [11] applied the neural style
transfer [18] for face swapping by considering the face identities as the artistic
styles in the original style transfer. However, these recent approaches still have
a problem. They require at least dozens of images of an individual person to
obtain a face-swapped image. Collecting that many images is possible, albeit
unreasonable for most non-celebrities.

Another recent study [20] proposed an identity-preserving GAN for trans-
ferring image appearances between two face images. While the purpose of this
study is close to that of face swapping, it does not preserve the appearances
of non-face regions including hairstyles and backgrounds. Several studies for
DNN-based image completion [21,22] have presented demonstrations of face ap-
pearance manipulation by filling the parts of an input image with their DNNs.
However, the users can hardly estimate the results of these approaches because
they only fill the regions specified by the users such that the completed results
imitate the images in the training data.

3 FSNet: A Generative Model for Face Swapping

The architecture of FSNet is shown in Fig. 2. The network is separated into
two parts and each of them performs one of two different tasks. The first part,
i.e., encoder-decoder network in Fig. 2(a), disentangles a face appearance as a
latent variable from a source image. The architecture of this part is based on
the variational autoencoder [23] (VAE), and the latent variable can be obtained
from the middle layer of the network. The second part, i.e., generator network
in Fig. 2(b), synthesizes a new face part such that it fits the non-face part of
a target image. The architecture of this part is based on the U-Net [24] and it
synthesizes the face part by concatenating the latent variable with the feature
map provided in the middle layer of the network. In the following subsections,
we first elaborate the two partial networks; subsequently, we describe an image
dataset for training the networks. In addition, we provide the detailed network
architecture of FSNet in the supplementary document.The notations used in this
paper are also summarized in the supplementary document.

3.1 Encoder-decoder network

The training of FSNet requires sampling the full face image xθ and three inter-
mediate images as in Fig. 2. Here, θ ∈ {s, t}, and xs and xt represent a source
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Fig. 2. Network architecture of FSNet. The network consists of two partial networks,
i.e., (a) encoder-decoder network, and (b) generator network. The encoder-decoder
network obtains a latent variable for a face appearance that is independent of the face
geometry and appearance of the non-face part. The generator network synthesizes a
face-swapped result from the latent variable and non-face part of another image.

and target image in face swapping, respectively. The three intermediate images,
i.e., face mask Mθ-f , face part image xθ-f , and landmark image xθ-l, will be
compared to the outputs from the encoder-decoder network.

As shown in Fig. 2(a), the encoder-decoder network outputs face mask M ′θ-f ,
face part image x′θ-f , landmark image x′θ-l, and non-face part image x′

θ-f̃
. In

the encoder-decoder network, the full face image xθ is first encoded by two
different encoders FEf

and FEl
. Following the standard VAEs, these encoders

output the means and standard deviations of the corresponding standard normal
distributions. Subsequently, the latent variables zθ-f and zθ-l are sampled from
the following distributions:

zθ-f = N (µθ-f , σθ-f ) ,
(
µθ-f , σ

2
θ-f

)
= FEf

(xθ),

zθ-l = N (µθ-l, σθ-l) ,
(
µθ-l, σ

2
θ-l

)
= FEl

(xθ),

where µθ and σ2
θ are the mean and variance of zθ. The three decoders FDM

, FDf
,

and FDl
reconstruct face mask M ′θ-f , face image x′θ-f , and landmark image x′θ-l,

respectively:

M ′θ-f = FDM
(zθ-f , zθ-l), x′θ-f = FDf

(zθ-f , zθ-l), x′θ-l = FDl
(zθ-l).

To encode only geometry-independent information in zθ-f , we input both zθ-f
and zθ-l to FDf

and FDM
, similarly for FEf

.
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3.2 Generator network

The architecture of generator network G is based on the U-Net [24], as shown
in Fig. 2(b). Unlike the original U-Net, the generator network receives latent
variables and concatenates them with a feature map given in the middle layer of
the network. Moreover, the generator network receives the non-face part image
x′
t-f̃

= x′t-f � M̃ ′t-f rather than the full-face image xt. Here, � denotes pixel-

wise multiplication and M̃ denotes an inversion of the mask M . To stabilize
the training process, we add Gaussian noises of standard deviation σ = 0.05 to
the non-face part image when the network is trained. In the middle layer of the
generator network, latent variables zs-f and zt-l are tiled and concatenated with
the feature map. Subsequently, the concatenated feature map is fed to the latter
part of the U-Net structure. Finally, we can obtain a face-swapped image x′st as
an output of the generator network. We denote the operation of the generator
network as follows:

x′st = G(xt-f̃ , zs-f , zt-l).

When the two same images xs and xt (s = t) are input to the proposed network,
the generator network should reproduce the input full-face image xs (= xt).
We denote the reconstructed image as x′s. It is noteworthy that the masked
image x′

t-f̃
, which is one of the inputs of the generator network, is computed by

the encoder-decoder network only using the full-face image xt. Therefore, face
swapping can be performed with only the source and target image themselves,
and the user need not prepare intermediate images used in the training.

3.3 Training

The proposed network is trained similarly as VAE-GAN [25]. In other words,
the two partial networks are trained with VAE objectives and GAN objectives,
separately. In addition, the proposed network is also trained with an identity
loss to preserve the face identities in the face swapping results. We define the
identity loss using the triplet loss [26]. Therefore, we sample a triplet of images
consisting of anchor sample xs1 , positive sample xs2 , and negative sample xt.
The anchor and positive samples are used as source images, and the negative
sample is used as a target image. The different identities in these three images
are ignored when we evaluate the VAE and GAN objectives.

VAE objectives: For three outputs M ′θ-f , x′θ-f , and x′θ-l, we define the recon-
struction losses using the corresponding ground truth images in the training
data. We evaluate the cross entropy losses for the face masks and landmark
images and an L1 loss for the face part images:

Lrecθ-M = E[LCE(Mθ-f ,M
′
θ-f )],

Lrecθ-f = E[‖xθ-f − x′θ-f‖1],

Lrecθ-l = E[LCE(xθ-l, x
′
θ-l)],
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where LCE denotes a function for the cross entropy loss. In addition, we define
another reconstruction loss Lrecθ between the full-face image xθ and its corre-
sponding reconstruction x′θ as well. For imposing more reconstruction loss for
the pixels in the foreground region, i.e., the face and hair regions, we define the
loss with the foreground mask Mθ-FG as follows:

Lrecθ = E
[∥∥(xθ − x′θ)� (Mθ-FG + β(1−Mθ-FG))

∥∥
1

]
.

In our implementation, we used the parameter β = 0.5 to halve the losses in
the background. To evaluate the means and standard deviations given with the
encoders, we employed a latent classifier as in α-GAN [27] rather than eval-
uating the Kullback-Leibler loss in the standard VAEs. Let Cω be the latent
classifier and z ∼ N (0, 1) be a random vector sampled with the standard normal
distribution. Therefore, we can define the latent classification loss as follows:

Llatθ-f = −E[logCω(zθ-f )]− E[log(1− Cω(zθ-f ))].

Equally, Llatθ-M and Llatθ-l are defined for zθ-M and zθ-l.

GAN objectives: As the standard GAN, both the encoder-decoder and generator
networks are trained adversarially with several discriminators. To evaluate the
real and synthesized images, we used two discriminators, i.e., global discriminator
Dg and patch discriminator Dp. The global discriminator distinguishes whether
an image is a real sample or a synthesized image. The patch discriminator, which
is originally introduced as a part of PatchGAN [28], distinguishes whether a local
patch of the image is from a real sample or a synthesized image. In addition to
xθ and x′θ, we also synthesize images with a random face using normal random
vectors instead of zθ-f and zθ-l. Let x̂′θ be such a random face image, we define

global and patch adversarial losses Ladv-gθ and Ladv-pθ as follows:

Ladv-{g,p}θ =− E
[
logD{g,p}(xθ)

]
− E

[
log(1−D{g,p}(x′θ))

]
− E

[
log(1−D{g,p}(x̂′θ))

]
.

Identity loss: In the CelebA dataset, which we used in the experiments, identity
labels are assigned to all the images. A straightforward method to evaluate
the identity of a synthesized image is to train an identity classifier. However,
human faces are typically similar between two different people. We found that
training by this straightforward approach is unstable and can be easily stuck in
a local minimum. Alternatively, we employed the triplet loss [26] to evaluate the
similarity of identities in two face images. The triplet loss is defined for a triple
of image samples, i.e., anchor, positive, and negative samples. These samples are
first encoded to the feature vectors; subsequently, the distances of the feature
vectors are computed for the anchor and positive samples, and the anchor and
negative samples. The triplet loss is defined to broaden the difference between
these distances. To train the network, we generate two face-swapped results
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(a) original (b) landmarks (c) face mask (d) face part (e) landmark
     image

(f) FG mask

(0, 20, 178, 178)

Fig. 3. Dataset preparation from each image in CelebA [3]. To reduce the size of the
dataset, we include only (a), (c), (e), and (f) in the dataset, and other intermediate
images are computed while training FSNet.

x′s1t and x′s2t from three input images xs1 , xs2 , and xt. The triplet losses are
defined for the triplets {xs1 , xs2 , xt}, {x′s1t, xs1 , xt)}, and {x′s2t, xs2 , xt}, where
images in each triplet denote {anchor, positve, negative} samples. For a triplet
{xs1 , xs2 , xt}, the triplet loss is defined using a feature extractor FEid

as in the
original study [26]:

Lid{s1,s2,t} = min
(
0, ‖FEid

(xs1)− FEid
(xs2)‖22 + α1 − ‖FEid

(xs1)− FEid
(xt)‖22

)
+ α3 min

(
0, ‖FEid

(xs1)− FEid
(xs2)‖22 − α2

)
.

In our implementation, we set the parameters as α1 =1.0, α2 =0.1, and α3 =0.5.
To normalize the color balances in the face images, we subtract the average pixel
colors from the image and divide it by the standard deviation of the pixel colors
before feeding the images to FEid

.

Hyper parameters: The overall loss function for training FSNet is defined by a
weighted sum of the loss functions above:

L = λrecf Lrecf + λrecM LrecM + λrecl Lrecl
+ λlat(Llatf + LlatM + Llatl )

+ λadv-gLadv-g + λadv-pLadv-p

+ λidLid

In this equation, we simply wrote L as an average of the corresponding losses for
s1, s2, and t for VAE and GAN objectives, and Lid as the sum of all the triplet
losses for the identity losses. We empirically determined the weighting factors
as λrecf = λrecM = 4,000, λrecl = 2,000, λlat = 30, λadv-g = 20, λadv-p = 30, and

λid = 100. In our experiment, the loss functions were minimized by mini-batch
training using the ADAM optimizer [29] with an initial learning rate of 0.0002,
β1 = 0.5, and β2 = 0.999. A mini-batch includes 20 images for each of xs1 , xs2 ,
and xt; therefore, the size of the mini-batch was 60.
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3.4 Datasets

The dataset for training FSNet includes four types of images, i.e., the orig-
inal full-face image (Fig. 3(a)), face mask image (Fig. 3(c)), landmark image
(Fig. 3(e)), and foreground mask (Fig. 3(f)). All these images are generated com-
putationally for each image in CelebA.

For an original full-face image, we first extract 68 facial landmarks (Fig. 3(b))
with Dlib [30], which is a typically used machine-learning library. A convex hull is
computed from the 41 landmarks that correspond to the eyes, nose, and mouth,
which are indicated with blue circles in Fig. 3(b). The convex hull is stretched to
obtain a face mask (Fig. 3(c)). The hull is stretched 1.3 times along the horizontal
direction and 1.4 times along the vertical direction.

Subsequently, we dilate the mask by 3% of the image width to ensure that
the mask boarders are slightly inside the face contours and include the eyebrows
inside the mask. The face part image (Fig. 3(d)) is obtained by applying the face
mask to the input image. We use landmarks on the eyes instead of the eyebrows
because the eyebrows are often hidden by bangs. Compared to the eyebrows, the
landmarks on the eyes are less likely to be hidden, and the face masks can be
more appropriately defined with them.

The landmark image Fig. 3(e) includes 5 landmarks inside the face region and
17 landmarks on the face contour. The top two internal landmarks correspond
to the eye center positions, and are calculated by averaging the position of the
eye landmarks. That in the middle corresponds to the nose position, and is
represented by a landmark on the tip of nose. The two bottom ones correspond
to the mouse position and are represented by two landmarks on two ends of
the mouse. The 17 contour landmarks are represented by those on the face
contour among the original 68 landmarks. These 22 landmarks are splatted on
the landmark image as circles with a radius of 3% of the image width. Finally,
The foreground mask (Fig. 3(f)) is detected using a state-of-the-art semantic
segmentation method, PSPNet [31]. Pixels labeled as “person” are used as the
foreground mask.

All of these images are cropped from 178 × 218 pixel region of the original
image by a square of 178×178 pixels whose top-left corner is at (0, 20). We used
the cropped images after resizing them to 128 × 128. While processing images
in CelebA, we could extract facial landmarks properly for 195,361 images out
of 202,599 images. Among these 195,361 images, we used 180,000 images for
training and the other 15,361 images for testing.

4 Results

This section presents our face swapping results for various face images. The
proposed method was implemented with TensorFlow in Python, and executed
on a computer with an Intel Xeon 3.6 GHz E5-1650 v4 CPU, NVIDIA GeForce
GTX TITAN X GPU, and 64 GB RAM. We trained the proposed network over
180,000 global steps. The training required approximately 72 hours using a single



10 R. Natsume et al.

Sources (lateral face)Source (frontal face)

Ta
rg

et
s

(fr
on

ta
l f

ac
e)

Ta
rg

et
s

 (l
at

er
al

 fa
ce

)

Fig. 4. Face swapping between images with different face orientations. The left group
shows the swapping results from frontal faces to lateral faces, while the right group
shows those from lateral faces to frontal faces.
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Fig. 5. Face swapping between images with different lighting conditions. The left group
shows the swapping results from shaded faces to uniformly illuminated faces, while the
right group shows those from uniformly illuminated faces to shaded faces.

GPU. All the results herein were generated using test images not included in the
training data.

Figure 1 shows the face swapping results for several face images. In this figure,
the source images are in the top row and the target images are in the left column.
As shown in this figure, face swapping is performed appropriately for such a
variety of inputs. In addition, we tested the input images with several challenging
cases to demonstrate the robustness of the proposed method. First, we swapped
faces between images with different face orientations. The results are shown in
Fig. 4. In this figure, one of the sources or target images shows a frontal face
and the other shows a lateral face. As shown in this figure, the face appearances
including their identities are transferred appropriately to the target image even
though the face orientations differed significantly. Next, we tested the images
with different lighting conditions. As shown in Fig. 5, one of the sources or target
images shows a uniformly illuminated face while the other shows a face lit from
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Fig. 6. Face swapping between images of the same person. The four images in each
group are those of an individual.

the side. When shaded faces are transferred to uniformly illuminated faces, the
shades are removed appropriately from the faces. Furthermore, when uniformly
illuminated faces are transferred to shaded faces, the overall appearances of the
results are natural whereas the shades in the target images are not necessarily
observed in the results. Thus, the proposed method achieves face swapping even
in such challenging cases.

We also evaluated the capability of preserving face identities by swapping
faces of a single individual using the proposed method. The results are illustrated
in Fig. 6. In this figure, each group of images includes two input images for source
images and the other two for target images. All of these four images show the
faces of a single person. As shown in this figure, the second and third rows in
each group are almost identical. These results demonstrate that the proposed
network can preserve the facial identities in the input images appropriately.

To evaluate the proposed method quantitatively, and compare it with prior
approaches, we conducted two experiments using four different metrics, as shown
in Table 1. Two of these metrics are for measuring the capability of identity
preservation, and the other two are for measuring the output image quality.

In these experiments, two previous studies: VAE-GAN [25] and α-GAN [27]
were used as baselines. Although these studies were not originally for face swap-
ping, we performed face swapping with them in three steps. First, we compute
a face mask similarly as in our dataset synthesis. Next, the face region of the
source image in the mask is copy and pasted to the target image such that the
two eye locations are aligned. Finally, the entire image appearance is repaired by
being fed to each network. In addition to these baseline methods, we compared
the proposed method with a 3DMM-based state-of-the-art method by Nirkin et
al. [15]. In each experiment, we sampled 1,000 image pairs randomly.

In the first experiment, we swapped the faces between two different images of
a single individual. Subsequently, we calculate the absolute difference and MS-
SSIM [32] between the input and swapped images. The results are shown in the
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Table 1. Performance evaluation in capabilities of identity preservation and image
qualities.

Same person Different people

Abs. errors MS-SSIM OpenFace Inception score

VAE-GAN [25]
Avg. 0.115 0.619 1.591 2.142
Std. 0.041 0.105 0.499 0.137

α-GAN [27]
Avg. 0.099 0.705 1.353 2.056
Std. 0.040 0.099 0.487 0.082

Nirkin et al. [15]
Avg. 0.024 0.956 0.811 2.993
Std. 0.010 0.025 0.749 0.229

FSNet
Avg. 0.030 0.936 0.883 2.846
Std. 0.007 0.029 0.829 0.116

FSNet (for images
Nirkin et al. failed)

Avg. 0.031 0.933 0.888 (1.235)
Std. 0.006 0.025 0.837 —

third and fourth columns of Table 1. In the second experiment, the faces of two
different people were swapped by each method. To evaluate how the identities
are preserved after face swapping, we calculated a squared Euclidean distance of
two feature vectors for an input and a face-swapped result using OpenFace [33],
which is an open-source face feature extractor. In addition, we computed the
inception scores [34] to measure the capability of our face swapping method
when applied to a broad variety of individuals. The results are shown in the fifth
and sixth columns of Table 1.

From these experiments, Nirkin et al. [15] demonstrated the best scores for
all the metrics in Table 1, and the proposed method follows it closely. However,
Nirkin et al.’s method sometimes fails to fit the 3DMM to one of the sources or
target images, and could generate the results for only approximately 90% of the
input pairs. Meanwhile, the proposed method and the other baseline methods
could generate the results for all the input pairs. Thus, the robustness of Nirkin
et al.’s method can be problematic in practice. We also calculated each score
with FSNet for the images whereby Nirkin et al.’s method could not generate
the results. The scores in the bottom rows indicate that each of them is almost
identical to that calculated with all sample images. These results demonstrate
that the proposed method is advantageous because it can well generate high-
quality results for arbitrary pairs of input images.

To elaborate the comparison with the method of Nirkin et al., we present
the typical failure cases of their method and our FSNet in Fig. 7. In this fig-
ure, the first two cases exhibit the limitations of Nirkin et al.’s method, and the
last one case for FSNet. First, their method and also other methods based on
the 3DMM often demonstrate the inaccurate segmentation of face areas. While
Nirkin et al. proposed the occlusion-aware segmentation of the face areas, its ac-
curacy is still limited. In their results in Fig. 7(a), the left eye of a target person
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Source

[Nirkin’17] FSNet

TargetSource

[Nirkin’17] FSNet

Target

(b) Incorrect lighting

Source

[Nirkin’17] FSNet

Target

(c) Target occluded(a) Failure segmentation

Fig. 7. Typical failure cases of Nirkin et al.’s method [15] and FSNet. (a) Failure
segmentation and (b) incorrect lighting estimation are those for Nirkin et al.’s method
and (c) occluded target face is that for proposed FSNet.

remained in our face swapping result. The proposed method and other image-
based method using DNNs do not require such a fragile segmentation process.
Next, the estimation of lighting condition from a single image is a challenging
task. The failure estimation drives the 3DMM-based methods in inappropriate
face appearances. As in Fig. 7(b), the face color in the results of Nirkin et al.
was attenuated unexpectedly, and the details around eyelashes became blurry.
The DNN-based methods, including FSNet, were not strongly affected by such
lighting conditions, as shown in Fig. 5. Meanwhile, the proposed method can-
not properly swap faces when a part of the face region is occluded. As shown
in Fig. 7(c), the camera and left hand in front of the face were lost in the face
swapping result. This is because only a limited number of image samples are
available for such occluded faces in the training dataset. Recently, several ap-
proaches [15,35] have augmented an image dataset by artificially adding random
obstacles to the images, and separated face regions occluded by such obstacles
successfully. Although this approach can likely be applied to the face image syn-
thesis, we will leave it for future work owing to its uncertain applicability. It is
noteworthy that the proposed method can consider a face occluded by hair as
in Fig. 7(a) because such hairstyles are included in the training data.

5 Conclusion

We proposed FSNet, a deep generative model for image-based face swapping. The
encoder-decoder part of the proposed network disentangles a face appearance as
a latent variable that is independent of the face geometry and appearance of non-
face parts. The latent variable was composed together with the non-face part
of the target image, and a face-swapped image was generated by the generative
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network. In contrast to previous methods, our method used neither the 3DMM
nor any additional fine-tuning. It performed face swapping only with a single
source image and a single target image. Through a number of experiments, we
demonstrated that the proposed method could perform face swapping robustly
even for several challenging inputs with different face orientations and lighting
conditions. In addition, the quality of the results is comparable with the state-of-
the-art method [15] and performed face swapping more stably. For future work,
we would like to explore its applicability to movies by introducing temporal
coherency in image generation.
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14. Masi, I., an Trãn, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need
to collect millions of faces for effective face recognition? In: European Conference
on Computer Vision (ECCV). (2016)

15. Nirkin, Y., Masi, I., Tran, A.T., Hassner, T., Medioni, G.: On face segmentation,
face swapping, and face perception. In: IEEE Conference on Automatic Face and
Gesture Recognition. (2018)

16. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: CVAE-GAN: Fine-Grained Image
Generation through Asymmetric Training. In: IEEE International Conference on
Computer Vision (ICCV). (2017) 2745–2754

17. FakeApp: https://www.fakeapp.org/ (2018)
18. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neu-

ral networks. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2016)

19. Natsume, R., Yatagawa, T., Morishima, S.: RSGAN: face swapping and editing us-
ing face and hair representation in latent spaces. arXiv prepring arXiv:1804.03447
(2018)

20. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving
face synthesis. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

21. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image
completion. ACM Trans. Graph. 36 (2017) 107:1–107:14

22. Chen, Z., Nie, S., Wu, T., Healey, C.G.: High Resolution Face Completion with
Multiple Controllable Attributes via Fully End-to-End Progressive Generative Ad-
versarial Networks. arXiv preprint arXiv:1801.07632 (2018)

23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

24. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention, Springer (2015) 234–241

25. Larsen, A.B.L., Kaae Sønderby, S., Larochelle, H., Winther, O.: Autoencoding
beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300
(2015)

26. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification
by multi-channel parts-based cnn with improved triplet loss function. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (2016) 1335–
1344

27. Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational
Approaches for Auto-Encoding Generative Adversarial Networks. arXiv preprint
arXiv:1706.04987 (2017)

28. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2017)

29. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980 (2014)



16 R. Natsume et al.

30. King, D.E.: Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research 10 (2009) 1755–1758

31. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid Scene Parsing Network. arXiv
preprint arXiv:1612.01105 (2016)

32. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for im-
age quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers. (2003) 1398–1402

33. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: OpenFace: A general-purpose face
recognition library with mobile applications. Technical report, CMU School of
Computer Science (2016)

34. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.,
Chen, X.: Improved techniques for training gans. In: Advances in Neural Informa-
tion Processing Systems (NIPS). Number 29. (2016) 2234–2242

35. Saito, S., Li, T., Li, H.: Real-time facial segmentation and performance capture
from rgb input. In: Proceedings of the European Conference on Computer Vision
(ECCV). (2016)



Supplementary Document:
FSNet: An Identity-Aware Generative Model for

Image-based Face Swapping

Ryota Natsume1(�), Tatsuya Yatagawa2, and Shigeo Morishima3

Graduate School of Advanced Science and Engineering,
Waseda University, Tokyo, Japan

1ryota.natsume.26@gmail.com, 2tatsy@acm.org, 3shigeo@waseda.jp

Table A1. The notations used in the paper.

Symbol Meaning

θ input image type s (source) or t (target)
xθ image of type θ
Mθ-f mask image for the face region of xθ
M̃θ-f mask image for the non-face region of xθ
xθ-f face part image which only shows the face part of xθ
xθ-f̃ non-face part image which hides the face part of xθ
xθ-l landmark image which indicates the landmark positions on xθ
Mθ-FG mask image for foreground region, i.e., face, hair, and body regions
x′,M ′ image and mask synthesized by neural networks
FEf , FEl encoder networks for the face region and landmarks, respectively
FDM , FDf , FDl decoder networks for face mask, face region, and landmarks
G generator network
Dg, Dp global and patch discriminator networks
Cω classifier network for latent variables, defined as in α-GAN [27]
µ, σ mean and standard deviation for a corresponding latent variable
z latent variable for a corresponding input image
Lrecθ reconstruction losses for corresponding inputs and image types

Llatθ latent classification loss, defined as in α-GAN [27]

Ladv-gθ ,Ladv-pθ discrimination losses for global and patch discriminators

Lids1,s2,t triplet loss for an image triplet xs1 , xs2 and xt
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Fig.A1. Additional results for face swapping.
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Fig.A2. Additional results for face swapping.
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Fig.A4. Additional results for face swapping.
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Table A2. Architecture of the local discriminator Dl(x).

Operation Kernel Strides Filters BN Activation Output to

Dl — Input: Nbatch × 128× 128× 3.

(1-a) Convolution 4× 4 2× 2 32 No Leaky ReLU (1-b)
(1-b) Convolution 4× 4 2× 2 64 No Leaky ReLU (1-c)
(1-c) Convolution 4× 4 2× 2 128 No Leaky ReLU (1-d)
(1-d) Convolution 4× 4 2× 2 256 No Sigmoid —

Dg — Input: Nbatch × 128× 128× 3.

(2-a) Convolution 4× 4 2× 2 32 No Leaky ReLU (2-b)
(2-b) Convolution 4× 4 2× 2 64 No Leaky ReLU (2-c)
(2-c) Convolution 4× 4 2× 2 128 No Leaky ReLU (2-d)
(2-d) Convolution 4× 4 2× 2 256 No Leaky ReLU (2-e)
(2-e) Convolution 4× 4 2× 2 512 No Leaky ReLU (2-f)
(2-f) Fully connected — — 1 No Sigmoid —

FE-x — Input: Nbatch × 128× 128× 3.

(3-a) Convolution 4× 4 2× 2 32 No Leaky ReLU (3-b)
(3-b) Convolution 4× 4 2× 2 64 No Leaky ReLU (3-c)
(3-c) Convolution 4× 4 2× 2 128 No Leaky ReLU (3-d)
(3-d) Convolution 4× 4 2× 2 256 No Leaky ReLU (3-e)
(3-e) Convolution 4× 4 2× 2 512 No Leaky ReLU (3-f), (3-g)
(3-f) Fully connected — — 128 No Softplus —
(3-g) Fully connected — — 128 No Softplus —

FE-id — Input: Nbatch × 128× 128× 3.

(3-a) Convolution 4× 4 2× 2 32 No Leaky ReLU (3-b)
(3-b) Convolution 4× 4 2× 2 64 No Leaky ReLU (3-c)
(3-c) Convolution 4× 4 2× 2 128 No Leaky ReLU (3-d)
(3-d) Convolution 4× 4 2× 2 256 No Leaky ReLU (3-e)
(3-e) Convolution 4× 4 2× 2 512 No Leaky ReLU (3-f), (3-g)
(3-f) Fully connected — — 128 No Sigmoid —

FD-x — Input: Nbatch × (128 + 8 + 16)→ Nbatch × 1× 1× 152.

(5-a) Deconvolution 4× 4 2× 2 512 Yes ReLU (5-b)
(5-b) Deconvolution 4× 4 2× 2 256 Yes ReLU (5-c)
(5-c) Deconvolution 4× 4 2× 2 128 Yes ReLU (5-d)
(5-d) Deconvolution 4× 4 2× 2 64 Yes ReLU (5-e)
(5-e) Deconvolution 4× 4 2× 2 32 Yes ReLU (5-f)
(5-f) Deconvolution 3× 3 1× 1 3 Yes Sigmoid —

G(x) — Nbatch × (128 + 8 + 128 + 8 + 16)→ Nbatch × 1× 1× 388.

(6-a) Convolution 3× 3 1× 1 64 No ReLU (6-b), (6-p)
(6-b) Convolution 3× 3 2× 2 64 No ReLU (6-c)
(6-c) Convolution 3× 3 1× 1 128 No ReLU (6-d), (6-n)
(6-d) Convolution 3× 3 2× 2 128 No ReLU (6-e)
(6-e) Convolution 3× 3 1× 1 256 No ReLU (6-d), (6-l)
(6-f) Convolution 3× 3 2× 2 256 No ReLU (6-f)
(6-g) Convolution 3× 3 1× 1 512 No ReLU (6-g)
(6-i) Deconvolution 3× 3 2× 2 256 No ReLU (6-j)
(6-j) Convolution 3× 3 1× 1 256 No ReLU (6-k)
(6-k) Deconvolution 3× 3 2× 2 128 No ReLU (6-l)
(6-l) Convolution 3× 3 1× 1 128 No ReLU (6-m)
(6-m) Deconvolution 3× 3 2× 2 64 No ReLU (6-n)
(6-n) Convolution 3× 3 1× 1 64 No ReLU (6-o)
(6-o) Deconvolution 3× 3 2× 2 64 No ReLU (6-p)
(6-p) Convolution 3× 3 1× 1 3 No ReLU —


	FSNet: An Identity-Aware Generative Model for Image-based Face Swapping
	Supplementary Document: FSNet: An Identity-Aware Generative Model for Image-based Face Swapping

