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Abstract. State-of-the-art methods for image-to-image translation with Gener-
ative Adversarial Networks (GANs) can learn a mapping from one domain to
another domain using unpaired image data. However, these methods require the
training of one specific model for every pair of image domains, which limits
the scalability in dealing with more than two image domains. In addition, the
training stage of these methods has the common problem of model collapse that
degrades the quality of the generated images. To tackle these issues, we propose
a Dual Generator Generative Adversarial Network (GZGAN), which is a robust
and scalable approach allowing to perform unpaired image-to-image translation
for multiple domains using only dual generators within a single model. More-
over, we explore different optimization losses for better training of GZGAN, and
thus make unpaired image-to-image translation with higher consistency and bet-
ter stability. Extensive experiments on six publicly available datasets with differ-
ent scenarios, i.e., architectural buildings, seasons, landscape and human faces,
demonstrate that the proposed G>?GAN achieves superior model capacity and bet-
ter generation performance comparing with existing image-to-image translation
GAN models.

Keywords: Generative Adversarial Network - Image-to-Image Translation - Un-
paired Data - Multi-Domain

1 Introduction

Generative Adversarial Networks (GANs) [6] have recently received considerable at-
tention in various communities, e.g., computer vision, natural language processing and
medical analysis. GANs are generative models which are particularly designed for im-
age generation tasks. Recent works have been able to yield promising image-to-image
translation performance (e.g., pix2pix [8] and BicycleGAN [51]]) in a supervised set-
ting given carefully annotated image pairs. However, pairing the training data is usually
difficult and costly. The situation becomes even worse when dealing with tasks such as
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Fig. 1. A motivation illustration of the proposed G?GAN (c) compared with CycleGAN (a) [50]
and StarGAN [3] (b). For the multi-domain image-to-image generation task w.r.t. m image do-
mains, CycleGAN needs to train m(m—1) generator/discriminator pairs, while the proposed
G2GAN only needs to train dual generators and one discriminator. StarGAN [3] shares the same
generator for both the translation and reconstruction tasks, while GZGAN employs task-specific
generators (G* and G”) which allow for different network designs and different levels of param-
eter sharing.

artistic stylization, since the desired output is very complex, typically requiring artistic
authoring. To tackle this problem, several GAN approaches, such as CycleGAN [50],
DualGAN [48]], DiscoGAN [10], ComboGAN [1]] and DistanceGAN [3]], aim to ef-
fectively learn a hidden mapping from one image domain to another image domain
with unpaired image data. However, these cross-modal translation frameworks are not
efficient for multi-domain image-to-image translation. For instance, given m image do-
mains, pix2pix and BicycleGAN require the training of A2, =m(m—1)=0(m?) mod-
els; CycleGAN, DiscoGAN, DistanceGAN and DualGAN need C2,=""=1) —g (1,,2)
models or m(m—1) generator/discriminator pairs; ComboGAN requires ©(m) models.

To overcome the aforementioned limitation, Choi et al. propose StarGAN [5] (Fig-
ure [T[(b)), which can perform multi-domain image-to-image translation using only one
generator/discriminator pair with the aid of an auxiliary classifier [25]. More formally,
let X and Y represent training sets of two different domains, and z€X and yeY
denote training images in domain X and domain Y, respectively; let z, and z, in-
dicate category labels of domain Y and X, respectively. StarGAN utilizes the same
generator G twice for translating from X to Y with the labels z,, i.e., G (z, zy)’zy
and reconstructs the input  from the translated output G(z, zy) and the label z,, i.e.,
G(G(z, zy), zz)=z. In doing so, the same generator shares a common mapping and
data structures for two different tasks, i.e., translation and reconstruction. However,
since each task has unique information and distinct targets, it is harder to optimize the
generator and to make it gain good generalization ability on both tasks, which usually
leads to blurred generation results.

In this paper, we propose a novel Dual Generator Generative Adversarial Network
(G2GAN) (Figure c)). Unlike StarGAN, G2GAN consists of two generators and one
discriminator, the translation generator G* transforms images from X to Y, and the re-
construction generator G uses the generated images from G and the original domain
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label z, to reconstruct the original x. Generators G; and G,. cope with different tasks,
and the input data distribution for them is different. The input of G is a real image and
a target domain label. The goal of G; is to generate the target domain image. While
G, accepts a generated image and an original domain label as input, the goal of G,
is to generate an original image. For G; and G/, the input images are a real image
and a generated image, respectively. Therefore, it is intuitive to design different net-
work structures for the two generators. The two generators are allowed to use different
network designs and different levels of parameter sharing according to the diverse dif-
ficulty of the tasks. In this way, each generator can have its own network parts which
usually helps to learn better each task-specific mapping in a multi-task setting [31].

To overcome the model collapse issue in training G?GAN for the multi-domain
translation, we further explore different objective losses for better optimization. The
proposed losses include (i) a color cycle-consistency loss which targets solving the
“channel pollution” problem [40] by generating red, green, blue channels separately
instead of generating all three at one time, (ii) a multi-scale SSIM loss, which preserves
the information of luminance, contrast and structure between generated images and in-
put images across different scales, and (iii) a conditional identity preserving loss, which
helps retaining the identity information of the input images. These losses are jointly em-
bedded in G2GAN for training and help generating results with higher consistency and
better stability. In summary, the contributions of this paper are as follows:

e We propose a novel Dual Generator Generative Adversarial Network (GZGAN),
which can perform unpaired image-to-image translation among multiple image do-
mains. The dual generators, allowing different network structures and different-
level parameter sharing, are designed to specifically cope with the translation and
the reconstruction tasks, which facilitates obtaining a better generalization ability
of the model to improve the generation quality.

e We explore jointly utilizing different objectives for a better optimization of the pro-
posed G2GAN, and thus obtaining unpaired multi-modality translation with higher
consistency and better stability.

e We extensively evaluate G2GAN on six different datasets in different scenarios,
such as architectural buildings, seasons, landscape and human faces, demonstrating
its superiority in model capacity and its better generation performance compared
with state-of-the-art methods on the multi-domain image-to-image translation task.

2 Related Work

Generative Adversarial Networks (GANs) [6] are powerful generative models, which
have achieved impressive results on different computer vision tasks, e.g., image genera-
tion [35126]], editing [4437]] and inpainting [15/47]. However, GANSs are difficult to train,
since it is hard to keep the balance between the generator and the discriminator, which
makes the optimization oscillate and thus leading to a collapse of the generator. To ad-
dress this, several solutions have been proposed recently, such as Wasserstein GAN [2]]
and Loss-Sensitive GAN [28]. To generate more meaningful images, CGAN [23] has
been proposed to employ conditioned information to guide the image generation. Extra
information can also be used such as discrete category labels [27116]], text descriptions
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[20429], object/face keypoints [30i42]], human skeleton [40i38] and referenced images
[8/14]. CGAN models have been successfully used in various applications, such as im-
age editing [27], text-to-image translation [20] and image-to-image translation [8] tasks.
Image-to-Image Translation. CGAN models learn a translation between image inputs
and image outputs using neutral networks. Isola et al. [8] design the pix2pix framework
which is a conditional framework using a CGAN to learn the mapping function. Based
on pix2pix, Zhu et al. [51] further present BicycleGAN which achieves multi-modal
image-to-image translation using paired data. Similar ideas have also been applied to
many other tasks, e.g. generating photographs from sketches [33]]. However, most of the
models require paired training data, which are usually costly to obtain.

Unpaired Image-to-Image Translation. To alleviate the issue of pairing training data,
Zhu et al. [50] introduce CycleGAN, which learns the mappings between two unpaired
image domains without supervision with the aid of a cycle-consistency loss. Apart from
CycleGAN, there are other variants proposed to tackle the problem. For instance, Cou-
pledGAN [18]] uses a weight-sharing strategy to learn common representations across
domains. Taigman et al. [39] propose a Domain Transfer Network (DTN) which learns
a generative function between one domain and another domain. Liu et al. [17] extend
the basic structure of GANs via combining the Variational Autoencoders (VAEs) and
GAN:Ss. A novel DualGAN mechanism is demonstrated in [48]], in which image transla-
tors are trained from two unlabeled image sets each representing an image domain.
Kim et al. [10] propose a method based on GANSs that learns to discover relations
between different domains. However, these models are only suitable in cross-domain
translation problems.

Multi-Domain Unpaired Image-to-Image Translation. There are only very few re-
cent methods attempting to implement multi-modal image-to-image translation in an
efficient way. Anoosheh et al. propose a ComboGAN model [1], which only needs to
train m generator/discriminator pairs for m different image domains. To further re-
duce the model complexity, Choi et al. introduce StarGAN [5]], which has a single
generator/discriminator pair and is able to perform the task with a complexity of ©(1).
Although the model complexity is low, jointly learning both the translation and recon-
struction tasks with the same generator requires the sharing of all parameters, which
increases the optimization complexity and reduces the generalization ability, thus lead-
ing to unsatisfactory generation performance. The proposed approach aims at obtaining
a good balance between the model capacity and the generation quality. Along this re-
search line, we propose a Dual Generator Generative Adversarial Network (G®GAN),
which achieves this target via using two task-specific generators and one discriminator.
We also explore various optimization objectives to train better the model to produce
more consistent and more stable results.

3 G2?GAN: Dual Generator Generative Adversary Networks

We first start with the model formulation of G?GAN, and then introduce the proposed
objectives for better optimization of the model, and finally present the implementation
details of the whole model including network architecture and training procedure.
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Fig. 2. The framework of G2GAN. z, and z, indicate the category labels of domain X and Y,
respectively. G* and G are task-specific generators. The generator G* converts images from
domain X into domain Y and the generator G” inputs the generated image G*(x, z,) and the
original domain label z, and attempts to reconstruct the original image = during the optimization
with the proposed different objective losses.

3.1 Model Formulation

In this work, we focus on the multi-domain image-to-image translation task with un-
paired training data. The overview of the proposed G2GAN is depicted in Figure The
proposed G2?GAN model is specifically designed for tackling the multi-domain trans-
lation problem with significant advantages in the model complexity and in the training
overhead compared with the cross-domain generation models, such as CycleGAN [50],
DiscoGAN [10] and DualGAN [48]], which need to separately train C%:W mod-
els for m different image domains, while ours only needs to train a single model. To
directly compare with StarGAN [5], which simply employs the same generator for the
different reconstruction and translation tasks. However, the training of a single gen-
erator model for multiple domains is a challenging problem (refer to Section f)), we
proposed a more effective dual generator network structure and more robust optimiza-
tion objectives to stabilize the training process. Our work focuses on exploring different
strategies to improve the optimization of the multi-domain model aiming to give useful
insights in the design of more effective multi-domain generators.

Our goal is to learn all the mappings among multiple domains using dual generators
and one discriminator. To achieve this target, we train a translation generator G* to
convert an input image x into an output image y which is conditioned on the target
domain label z,, i.e. G*(z, z,)—y. Then the reconstruction generator G" accepts the
generated image G*(z,z,) and the original domain label z, as input, and learns to
reconstruct the input image x, i.e. G (G*(z, z,), 2, )—« through the proposed different
optimization losses, including the color cycle-consistency loss for solving the “channel
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pollution” issue and the MS-SSIM loss for preserving the information of luminance,
contrast and structure across scales. The dual generators are task-specific generators
which allows for different network designs and different levels of parameter sharing
for learning better the generators. The discriminator D tries to distinguish between the
real image y and the generated image G*(z, z,), and to classify the generated image
G'(x, z,) to the target domain label z, via the domain classification loss. We further
investigate how the distinct network designs and different network sharing schemes
for the dual generators dealing with different sub-tasks could balance the generation
performance and the network complexity. The multi-domain model StarGAN [3] did
not consider these aspects.

3.2 Model Optimization

The optimization objective of the proposed G?GAN contains five different losses, i.e.,
color cycle-consistency loss, multi-scale SSIM loss, conditional least square loss, do-
main classification loss and conditional identity preserving loss. These optimization
losses are jointly embedded into the model during training. We present the details of
these loss functions in the following.

Color Cycle-Consistency Loss. It is worth noting that CycleGAN [50] is different from
the pix2pix framework [8] as the training data in CycleGAN are unpaired, and thus Cy-
cleGAN introduces a cycle-consistency loss to enforce forward-backward consistency.
The core idea of “cycle consistency” is that if we translate from one domain to the other
and translate back again we should arrive at where we started. This loss can be regarded
as “pseudo” pairs in training data even though we do not have corresponding samples
in the target domain for the input data in the source domain. Thus, the loss function of
cycle-consistency is defined as:

‘C’CyC(Gt’ GT7 T, 2z, Zy) = ]ExNPdaca(w)[HGT(Gt(xv Zy)’ ZCE) - 33”1] (D
The optimization objective is to make the reconstructed images G"(G*(z, ), 25) as
close as possible to the input images x, and the L, norm is adopted for the recon-
struction loss. However, the “channel pollution” issue [40]] exists in this loss, which is
because the generation of a whole image at one time makes the different channels in-
fluence each other, thus leading to artifacts in the generation results. To solve this issue,
we propose to construct the consistence loss for each channel separately, and introduce
the color cycle-consistency loss as follows:

Leotoreye (GG @, 20, 2y) = Y Loye(G' G 2 2, 2y), )
i€{r,g,b}

where, %, 29, 2" are three color channels of image x. Note that we did not feed each
channel of the image into the generator separately. Instead, we feed the whole image
into the generator. We calculate the pixel loss for the red, green, blue channels sepa-
rately between the reconstructed image and the input image, and then sum up the three
distance losses as the final loss. By doing so, the generator can be enforced to generate
each channel independently to avoid the “channel pollution” issue.
Multi-Scale SSIM Loss. The structural similarity index (SSIM) has been originally
used in [44] to measure the similarity of two images. We introduce it into the proposed
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G2GAN to help preserving the information of luminance, contrast and structure across
scales. For the recovered image 7=G" (G"(z, 2, ), z,;) and the input image x, the SSIM
loss is written as:

Lssiu(@,2) = [I(7,2)]" [¢(@, 0))" [s(Z,2)]", 3)

2030, + C2
oz 402+ Cy’

Ozx +03
0702 + C3 ’

2uzits + C1

1(Z,z) = =2~ ——
@) pa+pz 4+ Ch

c(z,x) =

s(z,x) = O]
These three terms compare the luminance, contrast and structure information between T
and z respectively. The parameters a.>0, >0 and >0 control the relative importance
of the {(Z, z), ¢(Z, x) and s(Z, x), respectively; uz and ., are the means of T and x;
oz and o, are the standard deviations of Z and x; o3, is the covariance of Z and z; C1,
Cs and Cj are predefined parameters. To make the model benefit from multi-scale deep
information, we refer to a multi-scale implementation of SSIM [45]] which constrains
SSIM over scales. We write the Multi-Scale SSIM (MS-SSIM) as:

Lvs—ssmm (T, x) = [Im (7, ) H ¢; (@, )] [s;(Z, )] . (5)

Through using the MS-SSIM loss, the luminance, contrast and structure information of
the input images is expected to be preserved.

Conditional Least Square Loss. We apply a least square loss [21)50] to stabilize our
model during training. The least square loss is more stable than the negative log likeli-
hood objective Logan (G, D, 2y) = Bypaia(y) 108 Ds(y)] + Eonpyr, () log (1 —
Dy (G*(z, zy)))], and is converging faster than the Wasserstein GAN (WGAN) [2]. The
loss can be expressed as:

‘CLSGAN(Gt’ DS? Z?J) = EUNPdata(y) [(DS (y) - 1)2] + EwNPdaca(w) [DS(Gt(x’ Zy))QL (6)

where z, are the category labels of domain y, D, is the probability distribution over
sources produced by discriminator D. The target of G* is to generate an image G*(z, z,)
that is expected to be similar to the images from domain Y, while D aims to distinguish
between the generated images G*(z, z,) and the real images y.

Domain Classification Loss. To perform multi-domain image translation with a single
discriminator, previous works employ an auxiliary classifier [25\5] on the top of dis-
criminator, and impose the domain classification loss when updating both the generator
and discriminator. We also consider this loss in our optimization:

ﬁclassification(Gt, De, 22, 2y) = Eszdata(z){*[lOg De(2z]z) + log Dc(zy|Gt (=, Zy))]}(%)
where D, (z,|x) represents the probability distribution over the domain labels given by
discriminator D. D learns to classify z to its corresponding domain z,.. D (z,|G*(z, 2)
denotes the domain classification for fake images. We minimize this objective function
to generate images G*(z, z,) that can be classified as the target labels z,,.
Conditional Identity Preserving Loss. To reinforce the identity of the input image
during conversion, a conditional identity preserving loss [S0J39]] is used. This loss can
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encourage the mapping to preserve color composition between the input and the output,
and can regularize the generator to be near an identity mapping when real images of the
target domain are provided as the input to the generator.

Lidentity(Gt7 GT7 ZT) - EI"’Pdata(z) [HGT(-T: ZT) - 1‘”1] (8)

In this way, the generator also takes into account the identity preserving via the back-
propagation of the identity loss. Without this loss, the generators are free to change the
tint of input images when there is no need to.

Full GZGAN Objective. Given the losses presented above, the complete optimization
objective of the proposed GZGAN can be written as:

L= ACLSGAN + )\lﬁclassification + )\2£colorcyc + A3ACI\/IS—SSHVI + A4‘Cide'ntityy (9)

where A1, A2, A3 and )\, are parameters controlling the relative importance of the corre-
sponding objectives terms. All objectives are jointly optimized in an end-to-end fashion.

3.3 Implementation Details

G2?GAN Architecture. The network consists of a dual generator and a discriminator.
The dual generator is designed to specifically deal with different tasks in GANS, i.e. the
translation and the reconstruction tasks, which has different targets for training the net-
work. We can design different network structures for the different generators to make
them learn better task-specific objectives. This also allows us to share parameters be-
tween the generators to further reduce the model capacity, since the shallow image
representations are sharable for both generators. The parameter sharing facilitates the
achievement of good balance between the model complexity and the generation quality.
Our model generalizes the model of StarGAN [5]]. When the parameters are fully shared
with the usage of the same network structure for both generators, our basic structure be-
comes a StarGAN. For the discriminator, we employ PatchGAN [8l50413l5]]. After the
discriminator, a convolution layer is applied to produce a final one-dimensional output
which indicates whether local image patches are real or fake.

Network Training. For reducing model oscillation, we adopt the strategy in [36]] which
uses a cache of generated images to update the discriminator. In the experiments, we set
the number of image buffer to 50. We employ the Adam optimizer [[11] to optimize the
whole model. We sequentially update the translation generator and the reconstruction
generator after the discriminator updates at each iteration. The batch size is set to 1
for all the experiments and all the models were trained with 200 epochs. We keep the
same learning rate for the first 100 epochs and linearly decay the rate to zero during
the next 100 epochs. Weights were initialized from a Gaussian distribution with mean
0 and standard deviation 0.02.

4 Experiments

In this section, we first introduce the experimental setup, and then show detailed quali-
tative and quantitative results and model analysis.
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Dataset | Type | # Domain | # Translation | Resolution | Unpaired/Paired | # Training | # Testing | # Total
Facades [41] Architectures 2 2 256 X 256 Paired 800 212 1,012
AR [22] Faces 4 12 768 X 576 Paired 920 100 1,020
Bu3dfe [49] Faces 7 42 512512 Paired 2,520 280 2,800
Alps [1] Natural Seasons 4 12 - Unpaired 6,053 400 6,453
RaFD [12] Faces 8 56 1024 X 681 Unpaired 5,360 2,680 | 8,040
Collection [50]| Painting Style 5 20 256 X 256 Unpaired 7,837 1,593 9,430

Table 1. Description of the datasets used in our experiments.

4.1 Experimental Setup

Datasets. We employ six publicly available datasets to validate our GZGAN. A detailed
comparison of these datasets is shown in Table [T} including Facades, AR Face, Alps
Season, Bu3dfe, RaFD and Collection style datasets.

Parameter Setting. The initial learning rate for Adam optimizer is 0.0002, and 8; and
B2 of Adam are set to 0.5 and 0.999. The parameters A1, A2, A3, A4 in Equation ] are
set to 1, 10, 1, 0.5, respectively. The parameters C7 and C in Equation [Z_f] are set to
0.012 and 0.032. The proposed G2GAN is implemented using deep learning framework
PyTorch. Experiments are conducted on an NVIDIA TITAN Xp GPU.

Baseline Models. We consider several state-of-the-art cross-domain image generation
models, i.e. CycleGAN [30], DistanceGAN [3], Dist. + Cycle [3]], Self Dist. [3]], Dual-
GAN [48], ComboGAN [1]], BicycleGAN [51]], pix2pix [8] as our baselines. For com-
parison, we train these models multiple times for every pair of two different image
domains except for ComboGAN [1], which needs to train m models for m different
domains. We also employ StarGAN [3]] as a baseline which can perform multi-domain
image translation using one generator/discriminator pair. Note that the fully supervised
pix2pix and BicycleGAN are trained on paired data, the other baselines and GZGAN
are trained with unpaired data. Since BicycleGAN can generate several different out-
puts with one single input image, and we randomly select one output from them for
comparison. For a fair comparison, we re-implement baselines using the same training
strategy as our approach.

4.2 Comparison with the State-of-the-Art on Different Tasks

We evaluate the proposed G2GAN on four different tasks, i.e., label«»photo translation,
facial expression synthesis, season translation and painting style transfer. The compari-
son with the state-of-the-arts are described in the following.

Task 1: Label«>Photo Translation. We employ Facades dataset for the label«>photo
translation. The results on Facades were only meant to show that the proposed model
is also applicable on translation on two domains only and could produce competitive
performance. The qualitative comparison is shown in Figure [3]| We can obverse that
ComboGAN, Dist. + Cycle, Self Dist. fail to generate reasonable results on the photo
to label translation task. For the opposite mapping, i.e. (labels—photos), DualGAN,
Dist. + Cycle, Self Dist., StarGAN and pix2pix suffer from the model collapse problem,
which leads to reasonable but blurry generation results. The proposed G?GAN achieves
compelling results on both tasks compared with the other baselines.
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Task 2: Facial Expression Synthesis. We adopt three face datasets (i.e. AR, Bu3dfe
and RaFD) for the facial expression synthesis task with similar settings as in StarGAN.
Note that for AR dataset, we not only show the translation results of the neutral expres-
sion to other non-neutral expressions as in [3], but also present the opposite mappings,
i.e. from non-neutral expressions to neutral expression. For Bu3dfe dataset, we only
show the translation results from neutral expression to other non-neutral expressions
as in [5] because of the space limitation. As can be seen in Figure @] Dist. + Cycle
and Self Dist. fail to produce faces similar to the target domain. DualGAN generates
reasonable but blurry faces. DistanceGAN, StarGAN, pix2pix and BicycleGAN pro-
duce much sharper results, but still contain some artifacts in the generated faces, e.g.,
twisted mouths of StarGAN, pix2pix and BicycleGAN on “neutral2fear” task. Cycle-
GAN, ComboGAN and GZGAN work better than other baselines on this dataset. We
can also observe similar results on the Bu3dfe dataset as shown in FigureE] (Left). Fi-
nally, we present results on the RaFD dataset in Figure [5] (Right). We can observe that
our method achieves visually better results than CycleGAN and StarGAN.

Task 3: Season Translation. We also validate GZGAN on the season translation task.
The qualitative results are illustrated in Figure[6] Note that we did not show pix2pix and
BicycleGAN results on Alps dataset since this dataset does not contain ground-truth
images to train these two models. Obviously DualGAN, DistanceGAN, Dist. + Cycle,
Self Dist. fail to produce reasonable results. StarGAN produces reasonable but blurry
results, and there are some artifacts in the generated images. CycleGAN, ComboGAN
and the proposed G2GAN are able to generate better results than other baselines. How-
ever, ComboGAN yields some artifacts in some cases, such as the “summer2autumn”
sub-task. We also present one failure case of our method on this dataset in the last row
of Figure [6] Our method produces images similar to the input domain, while Cycle-
GAN and DualGAN generate visually better results compared with GZGAN on “win-
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Fig. 5. Comparison with different models for facial expression translation on Bu3dfe (Left) and

RaFD (Right) datasets.

Model |AMT| 1S | FID Model | AMT | FD | cA

CycleGAN [50] (ICCV 2017) | 16.8%=4-1.9% |47.4823| 73.72%
StarGAN [5] (CVPR 2018) 13.9%+1.4% [58.1562 [ 44.63%

CycleGAN [50] | 19.5 [1.6942|52.8230

StngANIS] 24.7 | 1.6695]51.6929 G2GAN (Ours) 19.8% +2.4% | 43.7473 | 78.84%
GZGAN (Ours) | 29.1 [1.7187]51.2765 Real Data E [9134%
Table 2. Results on RaFD. Table 3. Results on collection style set.

ter2spring” sub-task. It is worth noting that CycleGAN and DualGAN need to train
twelve generators on this dataset, while GZGAN only requires two generators, and thus
our model complexity is significantly lower.

Task 4: Painting Style Transfer. Figure[7|shows the comparison results on the painting
style dataset with CycleGAN and StarGAN. We observe that StarGAN produces less
diverse generations crossing different styles compared with CycleGAN and G2GAN.
G2GAN has comparable performance with CycleGAN, requiring only one single model
for all the styles, and thus the network complexity is remarkably lower compared with
CycleGAN which trains an individual model for each pair of styles.

Quantitative Comparison on All Tasks. We also provide quantitative results on the
four tasks. Different metrics are considered including: (i) AMT perceptual studies [SOUS],
(i1) Inception Score (IS) [32], (iii) Fréchet Inception Distance (FID) [7] and (iv) Classi-
fication Accuracy (CA) [5]. We follow the same perceptual study protocol from Cycle-
GAN and StarGAN. Tables [2] 3] and [ report the performance of the AMT perceptual
test, which is a “real vs fake” perceptual metric assessing the realism from a holistic
aspect. For Facades dataset, we split it into two subtasks as in [50], label—+photo and
photo—label. For the other datasets, we report the average performance of all mappings.
Note that from Tables and |4} the proposed G2GAN achieves very competitive re-
sults compared with the other baselines. Note that GZGAN significantly outperforms
StarGAN trained using one generator on most of the metrics and on all the datasets.
Note that paired pix2pix shows worse results than unpaired methods in Table ] which
can be also observed in Dual GAN [48]].

We also use the Inception Score (IS) [32] to measure the quality of generated im-
ages. Tables andreport the results. As discussed before, the proposed G2GAN gen-
erates sharper, more photo-realistic and reasonable results than Dist. + Cycle, Self Dist.
and StarGAN, while the latter models present slightly higher IS. However, higher IS
does not necessarily mean higher image quality. High quality images may have small
IS as demonstrated in other image generation [[19] and super-resolution works [9134]).
Moreover, we employ FID [7] to measure the performance on RaFD and painting style
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Input CycleGAN DualGAN  ComboGAN  DistanceGAN

Fig. 6. Comparison with different models for season translation on Alps.

% Turkers label real | label — photo | photo— label | AR | Alps | Bu3dfe

CycleGAN {501 (ICCV 2017) 8.8% £ 1.5% | 4.8% =+ 0.8% |24.3% +1.7% |39.6% & 1.4%| 16.9% + 1.2%
DualGAN {481 (ICCV 2017) 0.6% + 0.2% | 0.8% + 0.3% | 1.9% + 0.6% [18.2% + 1.8%| 3.2% + 0.4%
ComboGAN [1] (CVPR 2018) 4.1% £ 0.5% [ 0.2% £+ 0.1% | 4.7% + 0.9% [34.3% + 2.2%[25.3% + 1.6%
DistanceGAN [3] (NIPS 2017) 57% £ 1.1% [ 12% £ 05% [ 2.7% £+ 0.7% | 44% £ 03% | 6.5% £ 0.7%
Dist. + Cycle [3] (NIPS 2017) 03% £ 0.2% | 02% £ 0.1% [ 1.3% £+ 0.5% | 3.8% £ 0.6% | 0.3% £ 0.1%

Self Dist. [3] (NIPS 2017) 03% £ 0.1% [ 0.1% £ 0.1% [ 0.1% £+ 0.1% | 57% £+ 0.5% | 1.1% £ 0.3%
StarGAN [5] (CVPR 2018 ) 35% £ 0.7% | 1.3% £ 03% [ 4.1% £+ 1.3% | 8.6% £ 0.7% | 9.3% £ 0.9%
pix2pix [8] (CVPR 2017) 4.6% £ 0.5% [ 1.5% £+ 0.4% | 2.8% + 0.6% - 3.6% £ 0.5%
BicycleGAN (NIPS 2017) 54% +£0.6% [ 1.1% £ 03% [2.1% £ 0.5% - 2.7% + 0.4%

G2 GAN (Ours, fully-sharing) 4.6% £ 0.9% | 2.4% + 0.4% | 6.8% + 0.6% [15.4% + 1.9%| 13.1% + 1.3%
G2GAN (Ours, partially-sharing) | 8.2% =4 1.2% | 3.6% =4 0.7% | 16.8% +1.2% |36.7% =+ 2.3% | 18.9% =+ 1.1%
G2GAN (Ours, no-sharing) 103% +1.6% |5.6% + 0.9% | 22.8% +1.9% | 47.7% +2.8% | 23.6% + 1.7%

Table 4. AMT “real vs fake” study on Facades, AR, Alps, Bu3dfe datasets.

datasets. Results are shown in Tables @ and [3] we observe that GZGAN achieves the
best results compared with StarGAN and CycleGAN.

Finally, we compute the Classification Accuracy (CA) on the synthesized images as
in [5]]. We train classifiers on the AR, Alps, Bu3dfe, Collection datasets respectively.
For each dataset, we take the real image as training data and the generated images of
different models as testing data. The intuition behind this setting is that if the generated
images are realistic and follow the distribution of the images in the target domain, the
classifiers trained on real images will be able to classify the generated image correctly.
For AR, Alps and Collection datasets we list top 1 accuracy, while for Bu3dfe we report
top 1 and top 5 accuracy. Tablesand show the results. Note that GZGAN outperforms
the baselines on AR, Bu3dfe and Collection datasets. On the Alps dataset, StarGAN
achieves slightly better performance than ours but the generated images by our model
contains less artifacts than StarGAN as shown in Figure|[6]

4.3 Model Analysis

Model Component Analysis. We conduct an ablation study of the proposed GZGAN
on Facades, AR and Bu3dfe datasets. We show the results without the conditional iden-
tity preserving loss (I), multi-scale SSIM loss (S), color cycle-consistency loss (C) and
double discriminators strategy (D), respectively. We also consider using two different
discriminators as in to further boost our performance. To study the parame-
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CycleGAN StarGAN
= .

Fig.7. Comparison on the multi-domain painting style transfer task.

| Facades | AR | Alps | Bu3dfe

Model 5 [ 5T GG [ BT G [ 5] .y

CycleGAN {501 (ICCV 2017) 3.6098 |2.8321| @1:27.333% |4.1734| @1:42.250% | 1.8173 | @1:48.292%, @5:94.167%
DualGAN [48] (ICCV 2017) 3.7495 [ 1.9148 | @1:28.667% |4.2661 | @1:53.488% | 1.7176 | @1:40.000%, @5:90.833%
ComboGAN [1] (CVPR 2018) 3.1289 [2.4750 | @1:28.250% [4.2438 | @1:62.750% | 1.7887 | @1:40.459%, @5:90.714%
DistanceGAN [31 (NIPS 2017) 3.9988 [2.3455 :26.000% [4.8047 | @1:31.083% [1.8974 | @1:46.458%, @5:90.000%
Dist. + Cycle [3] (NIPS 2017) 2.6897 [3.5554| @1:14.667% |5.9531 | @1:29.000% |3.4618 | @1:26.042%, @5:79.167%

Self Dist. [31 (NIPS 2017) 3.8155 [2.1350| @1:21.333% [5.0584 | @1:34.917% | 3.4620 | @1:10.625%, @5:74.167%
StarGAN [5] (CVPR 2018) 4.3182 |2.0290 :26.250% |3.3670 | @1:65.375% | 1.5640 | @1:52.704%, @5:94.898%
pix2pix [81(CVPR 2017) 3.6064 |2.2849 :22.667% - - 1.4575 | @1:44.667%, @5:91.750%
BicycleGAN [511 (NIPS 2017) 3.2217 [2.0859 | @1:28.000% - - 1.7373 | @1:45.125%, @5:93.125%

G2GAN (Ours, fully-sharing) 4.2615 |2.3875| @1:28.396% |3.6597 | @1:61.125% | 1.9728 | @1:52.985%, @5:95.165%
G2GAN (Ours, partially-sharing) | 4.1689 | 2.4846 | @1:28.835% |4.0158 | @1:62.325% |1.5896 | @1:53.456%, @5:95.846%
G2GAN (Ours, no-sharing) 4.0819 | 2.6522 | @1:29.667% |4.3773 | @1:63.667% | 1.8714 | @1:55.625%, @5:96.250%

Table 5. Results of Inception Score (IS) and Classification Accuracy (CA).

ter sharing for the dual generator, we perform experiments on different schemes includ-
ing: fully-sharing, i.e. the two generators share the same parameters, partially-sharing,
i.e. only the encoder part shares the same parameters, no-sharing, i.e. two indepen-
dent generators. The basic generator structure follows [5]]. Quantitative results of the
AMT score and the classification accuracy are reported in Table 6] Without using dou-
ble discriminators slightly degrades performance, meaning that the proposed G2ZGAN
can achieve good results trained using the dual generator and one discriminator. How-
ever, removing the conditional identity preserving loss, multi-scale SSIM loss and color
cycle-consistency loss substantially degrades the performance, meaning that the pro-
posed joint optimization objectives are particularly important to stabilize the training
and thus produce better generation results. For the parameter sharing, as shown in Ta-
ble [ [5] and [7] we observe that different-level parameter sharing influences both the
generation performance and the model capacity, demonstrating our initial motivation.

Overall Model Capacity Analysis. We compare the overall model capacity with other
baselines. The number of models and the number of model parameters on Bu3dfe
dataset for different mn image domains are shown in Table[7] BicycleGAN and pix2pix
are supervised models so that they need to train A2, models for m image domains.
CycleGAN, DiscoGAN, DualGAN, DistanceGAN are unsupervised methods, and they
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Model | label—photo | photo—>label | AR | Bu3dfe

[ % Turkers label real| % Turkers label real | % Turkers label real]  CA | % Turkers label real| CA
All 10.3% + 1.6% 5.6% £ 0.9% 228% £1.9% @1:29.667% | 23.6% + 1.7% | @1:55.625%. @5:96.250%
Al 26% £ 04% 42% £ 1.1% 47% £ 08% | @1:29333% | 163% £ 11% | @1:53.739%
All-S-C 44% £ 0.6% 48% £ 1.3% 8.7% £ 0.6% @1:28.000% 14.4% £ 12%
AI-S-C-1| 22% £ 03% 39% £ 0.8% 21% £ 04% | @1:24667% | 13.6% & 1.2%
Al-D 90% £ 15% 53% £ 1.1% 21.7% £ 1.1% | @1:28367% | 223% £ 1.6% | @1:33.375%, @5:95.292%
All-D-S 3.3% £ 0.7% 45% £ 1.1% 14.7% £1.7% @1:27.333% 20.1% + 14% @1:42.917%, @5:91.250%
All-D-C 87% £ 13% 51% £ 09% 194% £15% | @1:28000% | 21.6% & 14% | @1:45.833%, @5:93.875%

Table 6. Evaluation of different variants of GZGAN on Facades, AR and Bu3dfe datasets. All:
full version of G2GAN, I: Identity preserving loss, S: multi-scale SSIM loss, C: Color cycle-
consistency loss, D: Double discriminators strategy.

Method ‘ # Models ‘ # Parameters with m=7
ix2pix [8] (CVPR 2017) 572M X 42
pBicylzleéAIEI {511 (NIPS 2017) AZy=m(m — 1) 64.3M X 42
CycleGAN [50] (ICCV 2017) 52.6M x 21
DiscoGAN [10] (ICML 2017) 02 _m(m-—1) 16.6M X 21
DualGAN [48] (ICCV 2017) mT 2 178.7M X 21
DistanceGAN [3] (NIPS 2017) 52.6M X 21
ComboGAN [1] (CVPR 2018) m 14.4M x 7
StarGAN [3] (CVPR 2018) 1 53.2M X 1
G2GAN (Ours, fully-sharing) 1 532M X 1
G2GAN (Ours, partial-sharing) 1 53.8M x 1
GZGAN (Ours, no-sharing) 1 61.6M X 1

Table 7. Comparison of the overall model capacity with different models.

require C'2, models to learn m image domains, but each of them contains two generators
and two discriminators. ComboGAN requires only m models to learn all the mappings
of m domains, while StarGAN and G2GAN only need to train one model to learn all the
mappings of m domains. We also report the number of parameters on Bu3dfe dataset,
this dataset contains 7 different expressions, which means m=7. Note that DualGAN
uses fully connected layers in the generators, which brings significantly larger num-
ber of parameters. CycleGAN and DistanceGAN have the same architectures, which
means they have the same number of parameters. Moreover, GZGAN uses less param-
eters compared with the other baselines except StarGAN, but we achieve significantly
better generation performance in most metrics as shown in Tables M and[5] When
we employ the parameter sharing scheme, our performance is only slightly lower (still
outperforming StarGAN) while the number of parameters is comparable with StarGAN.

5 Conclusion

We propose a novel Dual Generator Generative Adversarial Network (G2GAN), a ro-
bust and scalable generative model that allows performing unpaired image-to-image
translation for multiple domains using only dual generators within a single model. The
dual generators, allowing for different network structures and different-level parame-
ter sharing, are designed for the translation and the reconstruction tasks. Moreover, we
explore jointly using different loss functions to optimize the proposed GZGAN, and
thus generating images with high quality. Extensive experiments on different scenar-
ios demonstrate that the proposed G2GAN achieves more photo-realistic results and
less model capacity than other baselines. In the future, we will focus on the face aging
task [43], which aims to generate facial image with different ages in a continuum.
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