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Abstract. Perceptual judgment of image similarity by humans relies on
rich internal representations ranging from low-level features to high-level
concepts, scene properties and even cultural associations. However, ex-
isting methods and datasets attempting to explain perceived similarity
use stimuli which arguably do not cover the full breadth of factors that
affect human similarity judgments, even those geared toward this goal.
We introduce a new dataset dubbed Totally-Looks-Like (TLL) after
a popular entertainment website, which contains images paired by hu-
mans as being visually similar. The dataset contains 6016 image-pairs
from the wild, shedding light upon a rich and diverse set of criteria em-
ployed by human beings. We conduct experiments to try to reproduce
the pairings via features extracted from state-of-the-art deep convolu-
tional neural networks, as well as additional human experiments to ver-
ify the consistency of the collected data. Though we create conditions
to artificially make the matching task increasingly easier, we show that
machine-extracted representations perform very poorly in terms of repro-
ducing the matching selected by humans. We discuss and analyze these
results, suggesting future directions for improvement of learned image
representations.

1 Introduction

Human perception of images goes far beyond objects, shapes, textures and con-
tours. Viewing a scene often elicits recollection of other scenes whose global
properties or relations resemble the currently observed one. This relies on a rich
representation of image space in the brain, entailing scene structure and seman-
tics, as well as a mechanism to use the representation of an observed scene to
recollect similar ones from the profusion of those stored in memory. Though not
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Fig. 1: The Totally-Looks-Like dataset: pairs of perceptually similar images se-
lected by human users. The pairings shed light on the rich set of features humans
use to judge similarity. Examples include (but are not limited to): attribution
of facial features to objects and animals (a,b), global shape similarity (c,d),
near-duplicates (e), similar faces (f), textural similarity (g), color similarity (h)

fully understood, the capacity of the human brain to memorize images is surpris-
ingly large [3I12]. The recent explosion in the performance and applicability of
deep-learning models in all fields of computer vision [T9125I14] (and others), in-
cluding image retrieval and comparison [26], can tempt one to conclude that the
representational power of such methods approaches that of humans, or perhaps
even exceeds them. We aim to explore this by testing how deep neural networks
fare on the challenge of similarity judgment between pairs of images from a new
dataset, dubbed "Totally-Looks-Like" (TLL); See Figure [1} It is based on a
website for entertainment purposes, which hosts pairs of images deemed by users
to appear similar to each other, though they often share little common appear-
ance, if judging by low-level visual features. These include pairs of images out of
(but not limited to) objects, scenes, patterns, animals, and faces across various
modalities (sketch, cartoon, natural images). The website also includes user rat-
ings, showing the level of agreement with the proposed resemblances. Though it
is not very large, the diversity and complexity of the images in the dataset im-
plicitly captures many aspects of human perception of image similarity, beyond
current datasets which are larger but at the same time narrower in scope. We
evaluate the performance of several state-of-the-art models on this dataset, cast
as a task of image retrieval. We compare this with human similarity judgments,
forming not only a baseline for future evaluations, but also revealing specific
weaknesses in the strongest of the current learned representations that point the
way for future research and improvements. We conduct human experiments to
validate the consistency of the collected data. Even though in some experiments
we allow very favorable conditions for the machine-learned representations, they
still often fall short of correctly predicting the human matches.



Totally Looks Like - How Humans Compare, Compared to Machines

The next section overviews related work. This is followed by a description of
our method, experiments and analysis. We close the paper with discussion about
the large gaps between what is expected of state-of-the art learned representa-
tions and suggestions for future work. The dataset is available at the following
address: https://sites.google.com/view/totally-looks-like-dataset

2 Related Work

This paper belongs to a line of work that compares machine and human vision (in
the context of perception) or attempts to perform some vision related task that
is associated with high-level image attributes. As ourselves, others also tapped
the resources of social media/online entertainment websites to advance research
in high-level image understanding. For example, Deza and Parikh [6] collected
datasets from the web in order to predict the virality of images, reporting super-
human capabilities when five high-level features were used to train an SVM
classifier to predict virality.

Several lines of work measure and analyze differences between human and
machine perception. The work of [I7] collected 26k perceived dissimilarity mea-
surements from 2,801 visual objects across 269 human subjects. They found
several discrepancies between computational models and human similarity mea-
surements. The work of [I0] suggests that much of human-perceived similarity
can readily be accounted for by representations emerging in deep-learned models.
Others modify learned representations to better match this similarity, reporting
a high-level of success in some cases [10], and near-perfect in others [2]. The
work of [2] is done in a context which reduces similarity to categorization. Very
recently, Zhang Et al. [24] have shown that estimation of human perceptual
similarity is dramatically better using deep-learned features, whether they are
learned in a supervised or unsupervised manner, than more traditional methods.
Their evaluation involved comparing images to their distorted versions. The dis-
tortions tested were quite complex and diverse. Akin to ours, there are works
who question the behavioral level of humans vs. machines. For instance, Das
et. al [B] compare the attended image regions in Visual Question Answering
(VQA, [1]) to that of humans and report a rather low correlation. Other works
tackle high level tasks such as understanding image aesthetics [22] or even hu-
mor [4]. The authors of [7] compare the robustness of humans vs. machines to
image degradations, showing that DNN’s that are not trained on noisy data are
more error-prone than humans, as well as having a very different distribution of
non-class predictions when confronted with noisy images. Matching images and
recalling them are two very related subjects, as it seems unlikely for a human (or
any other system storing a non-trivial amount of images) to perform exhaustive
search over the entire collection of images stored in memory. Studies of image
memorability [I1] have successfully produced computational models to predict
which images are more memorable than others.

The works of [I7UT6IT0I24] show systematic results on large amounts of data.
However, most of the images within them either involve objects with a blank
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background [I7JI0] or of a narrow type (e.g., animals [16]). Our dataset is smaller
in scale than most of them, but it features images from the “wild”, requiring
similarities to be explained by features ranging from low-level to abstract scene
properties. In [24], a diverse set of distortions is applied to images, however,
the source image always remains the same, whereas the proposed dataset shows
pairs of images of different scenes and objects, still deemed similar by human ob-
servers. In this context, the proposed dataset does not contradict the systematic
evaluations performed by prior art, but rather complements them and broadens
the scope to see where modern image representations still fall short.

3 Method

The main source of data for the reported experiments is a popular website called
TotallyLooksLikeﬂ The website describes itself simply as “Stuff That Looks Like
Other Stuftf”. For the purpose of amusement, users can upload pairs of images
which, in their judgment, resemble each other. Such images may be have any
content, such as company logos, household objects, art-drawing, faces of celebri-
ties and others. Figure [1| shows a few examples of such image pairings. Each
submission is shown on the website, and viewers can express their agreement (or
disagreement) about the pairing by choosing to up-vote or down-vote. The total
number of up-votes and down-votes for each pair of images is displayed.

Little do most of the casual visitors of this humorous website realize that it
is in fact a hidden treasure: humans encounter an image in the wild and recall
another image which not only do they deem similar, but so do hundreds of
other site users (according to the votes). This provides a dataset of thousands
of such image pairings, by definition collected from the wild, that may aid to
explore the cognitive drive behind judgment of image similarity. Beyond this, it
contains samples of images that one recollects when encountering others, allowing
exploration in the context of long-term visual memory and retrieval.

While other works have explored image memorability [I1], in this work we
focus on the aspects of similarity judgment. We next describe the dataset we
created from this website.

3.1 Dataset

We introduce the Totally-Looks-Like (TLL) dataset. The dataset contains a
snapshot of 6016 image-pairs along with their votes downloaded from the website
in Jan. 2018 (a few images are added each day). The data has been downloaded
with permission from the web-site’s administrators to make it publicly available
for research purposes. For each image pair, we simply refer to the two images
as the “left image” and the “right image”, or more concisely as < L;, R; >,i €
1... N where N is the total number of images in the dataset. We plan to make the
data available on the project website, along with pre-computed features which
will be listed below.

! http://memebase.cheezburger.com/totallylookslike
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3.2 Image Retrieval

The TLL dataset is the basis for our experiments. We wish to test to what degree
similarity metrics based on generic machine-learned representations are able to
reproduce the human-generated pairings.

We formulate this as a task of image retrieval: Let £ = (L;); be the set of all
left images and similarly let R be the set of all right images. For a given image
L; we measure the distance ¢(L;, R;) between L; and each R; € R. This induces
a ranking r1,...r, over R by sorting according to the distance ¢(-,-). A perfect
ranking returns r; = 4. Calculating distances using ¢ over all pairs of the dataset
allows us to measure its overall performance as a distance metric for retrieval.
For imperfect rankings, we can measure the recall up to some ranking k, which is
the average number of times the correct match was in the top-k ranked images.
In practice, we measure distances between feature representations extracted via
state-of-the-art DCNN’s, either specialized for generic image categorization or
face identification, as detailed in the experiments section.

Direct Comparison vs. Recollection: We note that framing the task as
image retrieval may be unfair to both sides: when humans encounter an image
and recollect a perceptually similar one to post on the website, they are not faced
with a forced choice task of selecting the best match out of a predetermined set.
Instead, the image triggers a recollection of another image in their memory,
which leads to uploading the image pair. On one hand, this means that the
set of images from which a human selects a match is dramatically larger than
the limited-size dataset we propose, so the human can potentially find a better
match. On the other hand, the human does not get to scrutinize each image in
memory, as the process of recollection likely happens in an associative manner,
rather than by performing an exhaustive search on all images in memory. In this
regard, the machine is more free to spend as many computational resources as
needed to determine the similarity between a putative match. Another advantage
for the machine is that the “correct” match already exists in the predetermined
dataset; possibly finding it will be easier than in an open-ended manner as a
human does. Nevertheless, we view the task of retrieval from this closed set as
a first approximation. In addition, we suggest below some ways to make the
comparison more fair.

4 Experiments

We now describe in detail our experiments, starting from data collection and
preprocessing, through various attempts to reproduce the human data and ac-
companying analysis.

Data Preprocessing All images if the TLL (Totally-Looks-Like) dataset
were automatically downloaded along with their up-votes and down-votes from
the website. Each image pair < L;, R; >appears on the website as a single image
showing L; and R; horizontally concatenated, of constant width of 401 pixels
and height of 271 pixels. We discard for each image the last column and split it
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equally to left and right images. In addition, the bottom 26 pixels of each image
contains for each side a description of the content. While none of the methods
we apply explicitly use any kind of text detection/recognition, we discard these
rows as well to avoid the possibility of “cheating” in the matching process.

4.1 Feature extraction

We extract two kinds of features from each image: generic and facial.

Generic Features: we extract “generic” image features by recording the
output of the penultimate layer of various state-of-the-art network architectures
for image categorization, trained on the ImageNet benchmark [I8], which con-
tains more than a million training images spread over a thousand object cate-
gories. Training on such a rich supervised task been shown many times to pro-
duce features which are transferable across many tasks involving natural images
[20]. Specifically, we use various forms of Residual Networks [8], Dense Residual
Networks,[9], AlexNet [I3] and VGG-16 from [21], giving rise to feature-vector
dimensionalities ranging from a few hundred to a few thousands, dependent on
the network architecture. We extract the activations of the penultimate layer
of each of these networks for each of the images and store them for distance
computations.

Facial Features: many of the images contain faces, or objects that resemble
faces. Faces play an important role in human perception and give rise to many
of the perceived similarities. We run a face detector on all images, recording the
location of the face. For each detected face in each image, we extract features
using a deep neural network which was specifically designed for face recogni-
tion. The detector and features both use an off-the-shelf implementation ﬂ The
dimensionality the extracted face descriptor is 128. Figure [5| (¢) shows the dis-
tribution of the number of detected faces in images, as well as the agreement
between the number of detected faces in human-matched pairs. The majority of
images have a face detected in them, which very few containing more than one
face. When a face is detected in a left image of a given pair, it is likely that a
face will be detected in the right one as well.

Generic-Facial Features : very often in the TLL dataset, we can find
objects that resemble faces and play an important role in these images, being
the main object which led to the selection of an image pair. To allow comparing
such objects to one another, we extract generic image features from them, as
described above, to complement the description by specifically tailored facial
features. We do this under the likely assumption that while a facial feature
extractor might not produce reliable features for comparison from a face-like
object (because the network was not trained on such images), a generic feature
extractor might.

We denote by G;, F;, and GF; the set of generic features, facial features and
generic-facial features extracted from each image. Note that for some images
faces are not at all detected, and so F; and GF; are empty sets. For others,

2 https://github.com/ageitgey/face_recognition
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possibly more than one face is detected, in which F; and GF; can be sets of

features.
We next describe how we take all of these features into account.

4.2 Matching Images

We define the distance function between a pair of images L;, R; by their ex-
tracted features as described above. We either use the ¢ (Euclidean) distance

between a pair of features, i.e., (b{ (A, B) = ||A — B||2 or the cosine distance, i.e,
¢f(A,B) =1 — %. Where A, B are the corresponding features for images

L;, R;. The subscripts [, ¢ specify ¢ norm or cosine distance. The superscript
f specifies the kind of representation used, i.e, f € {G, F, GF'}. For facial fea-
tures (F') we use only the euclidean distance, as is designated by the applied
facial recognition method. Each distance function d)lf generates a distance ma-
trix @lf € RN with the i, location representing the distance between Lj;, R;
using this function. For image pairs with more than one face in either image we
assign the corresponding ¢, j location the minimal distance between all pairs of
features extracted from the corresponding faces. For image pairs where at least
one image has no detected face we assign the corresponding distance to +oo.

Armed with @{ , we may now test how the distance-induced ranking aligns
with the human-selected matches.

Evaluating Generic Features: as a first step, we evaluate which metric
(Euclidean vs. cosine) better matches the pairings in TLL. We noted that the
recall for a given number of candidates using the cosine distance is always higher
compared to that of the Euclidean distance. This can be seen in Figure [2| (a).
We calculated recall for each of the nets as a function of the number of retrieved
candidates. The figure shows the difference for each k between the recall for the
cosine vs. Euclidean distances. The cosine distance has a clear advantage here,
hence we choose to use it for all subsequent experiments (except for the case of
facial features).

Near duplicates: visualizing some of the returned nearest neighbors re-
vealed that there are duplicate (or near duplicate images) within the £ and R
image sets. As this could cause an ambiguity and hinder retrieval scores, we re-
moved all pairs where either the left or the right image was part of the duplicate.
We did this for both generic features and face-based features. For generic ones,
this corresponds to a cosine distance of > 0.15 (using Densenet121); virtually
all images below a distance of 0.1 were near-duplicate, so we set the threshold
conservatively to avoid accidental duplicates. For faces we set the threshold to
0.5. We also removed duplicates across pairs, meaning that if L; and R; were
found to be near-duplicates then we removed them, as an identical copy R; of
L; may be a better match for it than R;. Removing all such duplicates leaves us
with a subset we name T'LL,4, containing 1828 valid image pairs. The results of
Table [1| and (a) are calculated based on this dataset. This does not, however,
reduce the importance of the full dataset of 6016 images as it still contains many
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Fig.2: (a) Difference between recall per number of images retrieved for cosine
and /s-distance based retrieval. Recall is always improved if we use the cosine
distance over the ¢ distance between representations. (b) Retrieval performance
by various learned representations in the TLL dataset. Left: all images. Right:
showing recall only for the top 1 (first place), 5, 10, 20 images.
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interesting and useful image pairs to learn from. The reduction of the dataset
size is only done for evaluation purposes.

Faces: many images in the dataset contain faces, as indicated by Figure
(c). In fact, the figure represents an underestimation of the number of faces
as some faces we not detected. Such images seem qualitatively different from
the ones containing faces, in that the similarities are more about global shape,
texture, or face-like properties, though there are no actual faces in them in the
strict sense. Hence, we create another partition of the data without any detected
faces, and without the duplicate images according to the generic feature criteria.
This subset, T'L Ly, contains 1622 images. Both T'LLg4 and T'LL; are used in
Section [£.3] where we report additional results of human experiments.

R@1 R@5 R@10 R@2 R@50 R@100

AlexNet 3.67 9.19 12.09 15.37 22.59 30.63
vgglé  3.77 8.97 12.58 16.90 24.02 32.39
Res50  4.38 11.43 15.04 19.91 28.77 36.71
Res152 4.98 11.16 14.61 18.82 26.20 35.61
Den201 5.4712.91 16.63 21.44 30.47 38.18
Res18  5.53 12.14 15.10 19.47 28.06 35.61
Denl69 5.69 13.07 16.19 19.31 28.67 37.53
Denl121 5.80 13.84 16.90 21.94 29.92 38.89

Table 1: Retrieval performance (percentage retrieved after varying number of
candidates) by various learned representations in the TLL dataset.
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Next, we evaluate the retrieval performance as a function of the number of
returned image candidates. This can be seen graphically in Figure 2] (b). The left
sub-figure shows the recall for the entire dataset and the right sub-figure shows
it for the first, 5th, 10th and 20th returned candidates. Table [I| shows these
values numerically. For face features the retrieval accuracy using one retrieve
item was slightly better than the generic features, reaching 6.1%. Using generic
features extracted on faces performed quite poorly, at 2.6%. Evidently, none
of the networks we tested performed well on this benchmark. Such a direct
comparison is problematic for several reasons. Next, we attempt to ease the
retrieval task for the machine-based features.

Simulating Associative Recall : As mentioned in Sec. directly com-
paring to all images in the dataset is perhaps unfair to the machine-learning
test. Arguably, a human recalling an image first narrows down the search given
the query image, so only images with relevant features are retrieved from mem-
ory. Though we do not speculate about how this may be done, we can test how
retrieval improves if such a process were available. To do so, we sample for each
left image L; a random set R(L;) of size m which includes the correct right
image R; and an additional m — 1 images. This simulates a state where viewing
the image L; elicited a recollection of m candidates (including the correct one)
from which the final selection can be made. We do this for varying sizes of a
recollection set m € {1 — 5,10,20,50,100}, with 10 repetitions each. Table
(a) summarizes the mean performance obtained here. Although these are almost
“perfect” conditions, the retrieval accuracy falls to less than 50% if we use as
little as ten examples as the test set. The variance (not shown) was close to 0 in
all conditions.

Comparing Distances to Votes: we test whether there is any consistency
between the feature-based distances and the number of votes assigned by human
users. Assuming that a similar number of users viewed each uploaded image pair,
a higher number of votes suggests higher agreement that the pairing is indeed a
valid one. Possibly, this could also suggest that the images should be easier to
match by automatically extracted features. We calculate the correlation between
number of up-votes and down-votes vs the cosine-distance resulting from the
Densenet121 network. Unfortunately, there seems very little correlation, with a
Pearson coefficient of 0.023 / -0.068 for up/down-votes respectively. Hence the
following experiments do not use the voting information.

4.3 Human Experiments

We conducted experiments both in-lab and using Amazon Mechanical Turk
(AMT). We chose 120 random pairs of images from the dataset, as follows:
40 pairs were selected T'LLgp; and 80 from T'LL,4. From each pair, we displayed
the left image to the user, along with 4 additional selected images and the cor-
rect right image. The images were shuffled in random order. Human subjects
were requested to select the most similar image to the query (left) image. We
allocated 20 images to each sub-experiment. The names of the experiments are
random, generic, face and face-generic, indicating the type of features used
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Fig. 3: Automatic retrieval errors: using distances between state-of-the-art deep-
learned representations often does not do well in reproducing human similarity
judgments. Each row shows a query image on the left, five retrieved images
and the ground-truth on the right. Perceptual similarity can be attributed to
similarity between cartoonish and real faces (first three rows), flexible transfer
of facial expression (4th row), visually similar sub-regions (last two rows, hair
of person on row 5 resembles spider legs, hair of person on last row resembles
waves). Though the images and the retrieved ones may be much more similar to
each other in a strict sense, humans still consistently agree on the matched ones
(first, last columns).

to select the subset, if any. For random we simply chose a subset of 5 images
randomly, similarly to what is described in[f.2} For each of the others, we ordered
the images from the corresponding subset using each feature type and retained
the top-5. If the top-5 images retrieved did not contain the correct answer, we
randomly replaced one of them with it. A correct answer in this sense is selecting
the correct right image, for the human, and ranking it highest for the machine.
In each experiment, the four images except the correct match are regarded as
distractors. Distractors generated using feature similarity (as opposed to ran-
dom selection) pose a greater challenge for human participants, as they tend to
resemble, in some sense, the “correct” answer. Table (b) summarizes the over-
all accuracy rates. In lab settings (12 participants, ages 28-39) answered all 120
questions each (labeled humanl,human2 in the table). For AMT, we repeated
each experiment 20 times, where an experiment is answering a single query, mak-
ing an overall of 2400 experiments. A payment of 5 cents was rewarded for the
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m % correct

100.00
73,35 TLLay TLLa
61.54 randomy generic|lrandom face face-generic generic

1
2
3
4 54.30 | human(lab) 83.3 70 82.5 63.3 64.5 83.3
5
0

50.49 |human(AMT)| 84 68.25 || 90.25 59 60.5 74.5
1 37.99 machine 20 20 25 0 0 5
20 27.23 (b)
50 13.37

(a)

Table 2: (a) Modeling Associative Recall: percentage of correct matches using
conv-net derived features for the TLL dataset when a random sample of m
images including the correct one is used. For 10 images, the performance is less
that 50%. (b) man-versus-machine image matching accuracy for the perceptual
similarity task. tThe relatively high accuracy for “random” is because a small
subset is selected which contains the correct answer, highly increasing the chance
for correct guessing.

completion of each experiment. Only “master” workers were used in the experi-
ment, for increased reliability. We next highlight several immediate conclusions
from this data.

Data Verification: the first utility of the collected human data is to vali-
date the consistency of that collected from the website. Though not quite perfect,
there is large consistency between the human workers on AMT and the users
that uploaded the original TLL images. The performance of the lab-tested hu-
mans seems to be higher on average than the AMT workers, hinting that either
the variability in human answers is rather large or that the AMT results con-
tain some noise. Indeed, when we count the number of votes given to each of
the five options, we note a trend to select the first option the most, persisting
through options 2-4. The number of times each option was selected was 627, 522,
465, 395, 391; option 1 selected 30% more times than the expected probability.
Nevertheless, we see quite a high agreement rate throughout the table.

Human vs Machine Performance: the average human performance is
generally lower when distractors are selected non-randomly, as expected. This is
especially true for face images, where deep-learned features are used to select the
distractor set; here AMT humans achieve around 60% agreement with the TLL
dataset. This is not very surprising, as deep-learned face representations have
already been reported to surpass human performance several years ago [I5]. This
may suggest that for faces, distractor images brought by the automatic retrieval
seemed like better candidates to the humans than the original matches. The very
low consistency of the machine retrieval with humans is consistent with what is
reported in table [1} the less than 6% performance rates translated to 0, in this
specific sample of twenty examples for each test case. The relatively high per-

11
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formance in the “random” cases is due to selection of random distractors which
were likely no closer in feature-space than the nearest neighbors of the query,
hence resulting in seemingly high performance. We further show the consistency
among human users by counting the number of agreements on answers. We count
for each query the frequency of each answer and test how many times humans
agreed between themselves. In 87% of the cases, the majority of users (at least
11 out of 20) agreed on the answer. In fact, the most frequent event, occurring
30% of the time, was a total agreement - 20 out of 20 identical answers. More-
over, the Pearson correlation coefficient between user agreement and a correct
matching to TLL was 0.94. The plot of agreement frequencies is shown in Figure
(a). This large agreement is not in contradiction to the lower rates of success
in reproducing the TLL results, because the TLL dataset was generated by a
different process of unconstrained recollection, rather than forced choice as in
our experiments. Figure 5| (b) shows the relation between user agreement ratios
and the distribution of correctly answered images.

Finally, Figure [ shows four queries from the dataset, in the form of one
query image (left column) and five candidates (remainder columns). Two of the
rows shows cases where there was a perfect human agreement and two show
cases where the answers were almost uniformly spread over the candidates. It is
not difficult to guess which rows represent each case.

Fig.4: Sample queries with varying user agreement. Each row shows on the left
column a query image and 5 images from which to select a match. Some queries
are very much agreed upon and on some the answers are evenly distributed. We
show two rows of the first case, and two of the second. We encourage the reader
to guess which images were of each kind.
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Fig.5: (a) Probability of agreement between human users on the AMT experi-
ment. Humans tend to be highly consistent in their answers. (b) user agreement
ratio vs. correct matching with TLL. (¢) Distribution of number of detected faces
and agreement on detected faces between left-right image pairs.

(a) (b) (c)

= both
30 -
3000 3
= right

o
S

frequency
°
2
o
% correct
no. images
N
5
8
5

1000

40 60 80 100
user agreement user agreement no. faces

30 40 50 60 70 80 90 100 1 2 3

5 Discussion

We have looked into a high-level task of human vision: perceptual judgment
of image similarity. The new TLL dataset offers a glimpse into images which
are matched by human beings in the "wild”, in a less controlled fashion, but
arguably one that sheds a different light on various factors compared previous
work in this area. Most works in image retrieval deal with near-duplicate images,
or images which mostly depict the same type of concept. We explored the ability
of existing state-of-the-art deep-learned features to reproduce the matchings in
the dataset. Though one would predict this to produce a reasonable baseline,
neither features resulting from object classification networks and ones tailored
for face verification seem to be able to remotely reproduce the matchings between
the image pairs. We verified this using additional human experiments, both in-
lab and using Amazon Mechanical Turk. Tough the collected data from AMT
was not cleaned and clearly showed signs of existence of biases, the statistics still
clearly show that humans are quite consistent in choosing image pairs, even when
faced with a fair amount of distractors. Emulating easier scenarios for machines
(for example, Table[2| (a)) yielded improved results, but ones which are still very
far from reproducing the consistency observed among humans.

One could argue that fine-tuning the machine learned representation with a
subset of images in this dataset will reduce the observed gap. However, we believe
that sufficiently generic visual features should be able to reproduce the same
similarity measurements without being explicitly trained to do so, just as humans
do. Moreover, the set of various features employed by humans is likely rather
large; previous attempts to reproduce human similarity measurements resulted
in datasets much larger than the proposed one, though they were narrower in
scope in terms of image variability (for example [I7]). This raises the question,
how many images will an automatic method require to reproduce this rich set
of similarities demonstrated by humans?
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Fig.6: Additional examples. Perceived image similarities can be ab-
stract/symbolic: cats <> guards, doorway <+ mountain passageway (), low-level
(colors, (d,e,f), 2D shape (b,c,e,g), 3D-shape (e), related to well-known iconic
images from pop-culture (b,e,f,h) art (c¢) or pose-transfer across very different
objects/domains (b,c,d)

(e)

We do not expect strong retrieval systems to reproduce the matchings in TLL.
On the contrary, a cartoon figure should not be automatically associated with
the face of Nicolas Cage (2nd row), this would likely constitute a retrieval error
in normal conditions and lead to additional unexpected ones. However, we do
expect a high-level representation to report that of all the images in that row, the
most similar one is indeed that of the said actor. Humans can easily point to the
facial features in which the cartoon and the natural face image bear resemblance.
In fact, we believe that for similarity judgments to be consistent with those of
humans (note there is no “correct” or “incorrect”), they should be multi-modal
and conditioned on both images. Relevant factors include (1) facial features (2)
facial expressions (3rd row in Figure |3), requiring a robust comparison between
facial expressions in different modalities (3) texture or structure of part of the
image (last row, person’s hair). The factors are not fixed or weighted equally
in each case. Additional factors involve comparison between different objects or
familiarity with iconic images or characters as depicted in Figure [6]

As the importance of factors changes as a function of the image-pair, we
suggest that the comparison will be akin to visual-question-answering (VQA) ,
in the form “why should image A be regarded as similar / dissimilar to image
B?”. Just as VQA models on single images benefit from attention models [23], we
suggest that asking a question that requires extracting relevant information from
two different images will give rise to attention being applied to both. Information
extracted from one image (such as the presence of a face, waves, an unusual
facial expression, or spider-legs in Figure [3]) is necessary to produce a basis for
comparison and feature extraction from the other. We leave further development
of this direction to future work.
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