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Abstract. We introduce a novel generative autoencoder network model
that learns to encode and reconstruct images with high quality and reso-
lution, and supports smooth random sampling from the latent space of
the encoder. Generative adversarial networks (GANs) are known for their
ability to simulate random high-quality images, but they cannot recon-
struct existing images. Previous works have attempted to extend GANs
to support such inference but, so far, have not delivered satisfactory high-
quality results. Instead, we propose the Progressively Growing Generative
Autoencoder (PIONEER) network which achieves high-quality recon-
struction with 128×128 images without requiring a GAN discriminator.
We merge recent techniques for progressively building up the parts of the
network with the recently introduced adversarial encoder–generator net-
work. The ability to reconstruct input images is crucial in many real-world
applications, and allows for precise intelligent manipulation of existing
images. We show promising results in image synthesis and inference, with
state-of-the-art results in CelebA inference tasks.

1 Introduction

Recent progress in generative image modelling and synthesis using generative
adversarial networks (GANs, [1]) has taken us closer to robust high-quality image
generation. In particular, progressively growing GANs (ProgGAN, [2]) can syn-
thesize realistic high-resolution images with unprecedented quality. For example,
given a training dataset of real face images, the models learnt by ProgGAN are
capable of synthesizing face images that are visually indistinguishable from face
images of real people.

However, GANs have no inference capability. While useful for understanding
representations and generating content for training other models, the capability
for realistic image synthesis alone is not sufficient for most applications. Indeed, in
most computer vision tasks, the learnt models are used for feature extraction from
existing real images. This motivates generative autoencoder models that allow
both generation and reconstruction so that the mapping between the latent feature
space and image space is bi-directional. For example, image enhancement and
editing would benefit from generation and inference capabilities [3]. In addition,
unsupervised learning of generative autoencoder models would be widely useful
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Fig. 1: Examples of Pioneer network reconstruction quality in 128×128 reso-
lution (randomly chosen images from the CelebA test set). Here, images are
encoded into 512-dimensional latent feature vector and simply decoded back
to the original dimensionality. Below each image pair, we show the four closest
face matches to the input image in the training set (with respect to structural
similarity [12] of the face, cropped as in [2]).

in semi-supervised recognition tasks. Yet, typically the models such as variational
autoencoders (VAEs, [4,5]) generate samples not as realistic nor rich with fine
details as those generated by GANs. Thus, there have been many efforts to
combine GANs with autoencoder models [6,7,3,8,9,10,11], but none of them has
reached results comparable to ProgGAN in quality.

In this paper, we propose the ProgressIvely grOwiNg gEnerative
autoEncodeR (Pioneer) network that extends the principle of progressive
growing from purely generative GAN models to autoencoder models that allow
both generation and inference. That is, we introduce a novel generative autoen-
coder network model that learns to encode and reconstruct images with high
quality and resolution as well as to produce new high-quality random samples
from the smooth latent space of the encoder. Our approach formulates its loss
objective following [10], and we utilize spectral normalization [13] to stabilize
training—to gain the same effect as the ‘improved’ Wasserstein loss [14] used
in [2].

Similarly to [10], our approach contains only two networks, an encoder and a
generator. The encoder learns a mapping from the image space to the latent space,
while the generator learns the reciprocal mapping. Examples of reconstructions
obtained by mapping a real input face image to the latent space and back using
our learnt encoder and generator networks at 128×128 resolution are shown in
Figure 1. Examples of synthetic face images generated from randomly sampled
latent features by the generator are shown in Figure 3. In these examples, the
model is trained using the CelebA [15] and CelebA-HQ [2] datasets in a
completely unsupervised manner. We also demonstrate very smooth interpolation
between tuples of test images that the network has never seen before, a task that
is difficult and tedious to carry out with GANs.
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In summary, the key contributions and results of this paper are:(i) We
propose a generative image autoencoder model whose architecture is built up
progressively, with a balanced combination of reconstruction and adversarial
losses, but without a separate GAN-like discriminator; (ii) We show that at least
up to 128×128 resolution, this model can carry out inference on input images with
sharp output, and up to 256×256 resolution, it can generate sharp images, while
having a simpler architecture than the state-of-the-art of purely generative models;
(iii) Our model gives improved image reconstruction results with larger image
resolutions than previous state-of-the-art on CelebA. The PyTorch source code of
our implementation is available at https://aaltovision.github.io/pioneer.

2 Related Work

Pioneer networks belong to the family of generative models, with variational
autoencoders (VAEs), autoregressive models, GAN variants, and other GAN-like
models (such as [16]). The core idea of a GAN is to jointly train so-called generator
and discriminator networks so that the generator learns to output samples from
the same distribution as the training set [1], when given random input vectors
from a low-dimensional latent space, and the discriminator simultaneously learns
to distinguish between the synthetic and real training samples. The generator
and discriminator are differentiable, jointly learnt via backpropagation using
alternating optimization of an adversarial loss, where the discriminator is updated
to maximize the probability of correctly classifying real and synthetic samples
and the generator is updated to maximize the probability of discriminator making
a mistake. Upon convergence, the generator learns to produce samples that are
indistinguishable from the training samples (within the limits of the discriminator
network’s capacity).

Making the aforementioned training process stable has been a challenge, but
the Wasserstein GAN [17] improved the situation by adopting a smooth metric
for the distance between the two probability distributions [14]. In Karras et al.
[2], the Wasserstein GAN loss from [14] is combined with the idea of progressively
growing the layers and image resolution of the generator and discriminator during
training, yielding excellent image synthesis results. Progressive growing has been
used successfully also, for example, by [18]. There is also a line of work on other
regularizers that stabilize the training (e.g. [19,13,20]).

However, it is well understood that the capability for realistic image synthesis
alone is not sufficient for applications and there is a need for better unsupervised
feature learning methods that are able to capture the semantically relevant
dependencies of input data into a compact latent representation [8]. In their basic
form, GANs are not suitable for this purpose as they do not provide means of
learning the inverse mapping that projects the data back to latent space.

Nevertheless, there have been many recent efforts which utilize adversarial
training for learning bi-directional generative models that would allow both image
synthesis and reconstruction in a manner similar to autoencoders. For example,
the recent works [8] and [9] simultaneously proposed an approach that employs

https://aaltovision.github.io/pioneer
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three deep neural networks (generator, encoder, and discriminator) for learning
bi-directional mappings between the data space and latent space. Instead of
just samples, the discriminator is trained to discriminate tuples of samples with
their latent codes, and it is shown that at the global optimum the generator
and encoder learn to invert each other. Further, several others have proposed 3-
network approaches that add some form of reconstruction loss and combine ideas
of GAN and VAE: [6] extends VAE with a GAN-like discriminator for sample
space (also used by [3]), [7,21] do the same with a GAN-like discriminator for
the latent space, and [11] adds yet another discriminator (for the VAE likelihood
term). While the previous methods have advanced the field, they still have not
been able to simultaneously provide high quality results for both synthesis and
reconstruction of high resolution images. Most of these methods struggle with
even 64×64 images.

Recently, Ulyanov et al. [10] presented an autoencoder architecture that
simply consists of two deep networks, a generator θ and encoder φ, representing
mappings between the latent space and data space, and trained with a combination
of adversarial optimization and reconstruction losses. That is, given the data
distribution X and a simple prior distribution Z in the latent space, the updates
for the generator aim to minimize the divergence between Z and φ(θ(Z)), whereas
the updates for the encoder aim to minimize the divergence between Z and φ(X)
and simultaneously maximize the divergence between φ(θ(Z)) and φ(X). In
addition, the adversarial loss is supplemented with reconstruction losses both in
the latent space and image space to ensure that the mappings are reciprocal (i.e.
φ(θ(z)) ' z and θ(φ(x)) ' x). The results of [10] are promising regarding both
synthesis and reconstruction but the images still have low resolution. Scaling to
higher resolutions requires a larger network which makes adversarial training less
stable.

We combine the idea of progressive network growing [2] with the adversarial
generator–encoder (AGE) networks of [10]. However, the combination is not
straightforward, and we needed to identify a proper set of techniques to stabilize
the training. In summary, our contributions result in a model that is simpler
than many previous ones (e.g. having a large discriminator network just for
the purpose of training the generator is wasteful and can be avoided), provides
better results than [10] already in small (64×64) resolutions, and enables training
and good results with larger image resolutions than previously possible. The
differences to [11], [8], and, for example, [22] are substantial enough to perceive
by quick visual comparison.

3 Pioneer Networks

Our generative model achieves three key goals that define a good encoder–decoder
model: (i) faithful reconstruction of the input sample, (ii) high sample quality
(whether random samples or reconstructions), and (iii) rich representations. The
final item can be reformulated as a ‘well-behaved’ latent space that lends itself to
high-quality interpolations between given test samples and captures the diversity
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Fig. 2: The network grows in phases during which the image resolution doubles.
The adversarial/reconstructive training criterion is continuously applied at each
step, adapting to the present input–output resolution. The circular arrows illus-
trate the two modes of learning: (i) reconstruction of real training samples, and
(ii) reconstruction of the latent representation of randomly generated samples.

of features present in the training set. Critically, these requirements are strictly
parametrized by our target resolution—there are several models that achieve
many of the said goals up to 32×32 image resolution, but very few that have
shown good results beyond 64×64 resolution.

Pioneer networks achieve the reconstruction and representation goals up to
128×128 resolution and the random sample generation up to 256×256 resolution,
while using a combination of simple principles. A conceptual description in
the next subsection is followed by some theory (Sec. 3.2) and more practical
implementation details (Sec. 3.3).

3.1 Intuition

The defining training and architecture principles of Pioneer networks are shown
in Figure 2; on the left hand side, the competing objectives are presented in the
double loop, and on the right, the progressively growing structure of the network is
shown stepping up through 4×4, 8×8, 16×16, . . ., doubling the resolution in each
phase. The input x is squeezed through the encoder into a latent representation
z, which on the other hand is again decoded back to an image x̂. The motivation
behind the progressively growing setup is to encourage the network to catch the
fundamental structure and variation in the inputs at lower resolutions to help
the additional layers specialize in fine-tuning and adding details and nuances
when reaching the higher resolutions.

The network has encoder–decoder structure with no ad hoc components (such
as separate discriminators as in [3,6,11,7,21]). Similar to GANs, the encoder
and decoder are not trained as one, but instead as if they were two competing
networks. This requires the encoder to become sensitive to the difference between
training samples and generated (decoded) samples, and the decoder to keep
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making the difference smaller and smaller. While GANs achieve this with the
complexity cost of a separate discriminator network, we choose to just learn
to encode the samples in a source-dependent manner. This encoding could be,
then, followed by a classification layer, but instead we train the encoder so that
the distribution of latent codes of training samples approach a certain reference
distribution, while the distribution of codes of generated samples diverges from
it (see AGE [10]).

3.2 Encoder–Decoder Losses

As in variational autoencoders, we choose the Kullback–Leibler (KL) divergence
as the metric in latent space. Our reference distribution is unit Gaussian with a
diagonal covariance matrix. Each sample x ∈ X is encoded into a latent vector
z ∈ Z, giving rise to the posterior distribution qφ(z | x) on a d-dimensional
sphere. The KL-divergence between such a distribution and a d-dimensional unit
Gaussian is (see the reasoning in [10], but with the following corrections):

KL[qφ(z | x) ‖N (0, I)] = −d
2
+

d∑
j=1

[
σ2
j + µ2

j

2
− log(σj)

]
, (1)

where µj and σj are the empirical sample mean and standard deviation of
the encoded samples in the latent vector space with respect to dimension j =
1, 2, . . . , d, and N (0, I) denotes the unit Gaussian.

The encoder φ and decoder θ are connected via two reconstruction error
terms. We measure reconstruction error LX with L1 distance in sample space X
for the encoder, and code reconstruction error LZ with cosine distance in latent
code space Z for the decoder, as follows:

LX (θ,φ) = Ex∼X‖x− θ(φ(x))‖1, (2)

LZ(θ,φ) = Ez∼Z [1− zTφ(θ(z))], (3)

where X are the training samples and Z random latent vectors, with z and φ(x)
normalized to unity.

In other words, a training sample is encoded into the latent space and then
decoded back into a generated sample. A random latent vector is decoded into
a random generated sample that is then fed back to the encoder (Fig. 2). This
provides an elegant solution to forcing the network to learn to reconstruct training
images. The total loss function of the encoder Lφ and decoder Lθ are, then:

Lφ = KL[qφ(z | x) ‖N (0, I)]−KL[qφ(z | x̂) ‖N (0, I)] + λXLX , (4)
Lθ = −KL[qφ(z | x) ‖N (0, I)] + KL[qφ(z | x̂) ‖N (0, I)] + λZLZ , (5)

where x ∼ X and x̂ = θ(z) with z ∼ N (0, I). We fix the hyper-parameters λX
and λZ so they can be read as scaling constants. In practical implementation,
we can simplify the decoder loss to only account for

Lθ = KL[qφ(z | x̂) ‖N (0, I)] + λZLZ . (6)
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The training is adversarial in the sense that we use each loss function in turn,
first freezing the decoder weights and training only with the loss (4), and then
freezing the encoder weights and training only with the loss (6).

However, in Ulyanov et al. [10], this approach was only shown to work with
AGE on images up to 64×64 resolution. Beyond that, we need a larger network
architecture, which is unlikely to work with AGE alone. We confirmed this by
trying out a straightforward extension of AGE to 128×128 resolution (by visual
examination and via results in Table 1). In contrast, to stabilize training, our
model will increase the size of the network progressively, following [2], and utilize
the following techniques.

3.3 Model and Training

The training uses a convolution–deconvolution architecture typically used in
generative models, but here, the model is built up progressively during training,
as in [2]. We start training on low resolution images (4×4), bypassing most of
the network layers. We train each intermediate phase with the same number of
samples. In the first half of each consequtive phase, we start by adding a trivial
downsampling (encoder) and upsampling (decoder) layer, which we gradually
replace by fading in the next convolutional–deconvolutional layers simultaneously
in the encoder and the decoder, in lockstep with the input resolution which is also
faded in gradually from the previous to the new doubled resolution (8×8 etc.).
During the second half of each phase, the architecture remains unchanged. After
the first half of the target resolution phase, we no longer change the architecture.

We train the encoder and the generator with loss (4) and (6) in turn, utilizing
various stabilizing factors as follows. The architecture of the convolutional layers
in Pioneer networks largely follows yet simplifies the symmetric structure in
ProgGAN (see Table 2 of [2]), with the provision of replacing its discriminator
with an encoder. This requires removing the binary classifier, allowing us to
connect the encoder and decoder directly via the 512-dimensional latent vector.
We also remove the minibatch standard deviation layer, as it is sensitive to
batch-level statistics useful for a GAN discriminator but not for an encoder.

For stabilizing the training, we employ equalized learning rate and pixelwise
feature vector normalization in the generator [2], buffer of images created by
previous generators [23], and encoder spectral normalization [13]. We use ADAM
[24] with β1 = 0, β2 = 0.99, ε = 10−8 and learning rate 0.001. We use 2 generator
updates per 1 encoder update. For result visualization (but not training), we use
an exponential running average for the weights of the generator over training steps
as in [2]. Of these techniques, spectral normalization warrants some elaboration.

To stabilize the training of generative models, it is important to consider the
function space within which the discriminator must fit in general, and, specifically,
controlling its Lipschitz constant. ProgGAN uses improved Wasserstein loss [14]
to keep the Lipschitz constant close to unity. However, this loss formulation is not
immediately applicable to the slightly more complex AGE-style loss formulation,
so instead, we adopted GAN spectral normalization [13] to serve the same purpose.
In this spectral normalization approach, the spectral norm of each layer of the
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Fig. 3: Randomly generated face image samples with Pioneer networks using
CelebA for training at resolutions 64×64 (top) and 128×128 (middle), and
using CelebA-HQ for 256×256 (bottom).

encoder (discriminator) network is constrained directly at each computation pass,
allowing the network to keep the Lipschitz constant under control. Crucially,
spectral normalization does not regularize the network via learnable parameters,
but affects the scaling of network weights in a data-dependent manner.

In our experiments, it was evident that without such a stabilizing factor, the
progressive training would not remain stable beyond 64×64 resolution. Spectral
normalization solved this problem unambiguously: without it, the training of the
network was consistently failing, while with it, the training almost consistently
converged. Other strong stabilization methods, such as the penalty on the weighted
gradient norm [19], might have worked here as well.

4 Experiments

Pioneer networks are more most immediately applicable to learning image
datasets with non-trivial resolutions, such as CelebA [15], LSUN [25], and
ImageNet. Here, we run experiments on CelebA and CelebA-HQ [2] (with
training/testing split 27000/3000) and LSUN bedrooms. For comparing with
previous works, we also include Cifar-10, although its low-resolution images
(32×32) were not expected to be most relevant for the present work.

Training with high resolutions is relatively slow in both ProgGAN and our
method, but we believe that significant speed optimization is possible in future
work. In fact, it is noteworthy that you can train these models for a long time
without running into typical GAN problems, such as ‘mode collapse’ or ending
up oscillating around a clearly suboptimal point. We trained the Pioneer model
on CelebA with one Titan V GPU for 5 days up to 64×64 resolution (172
epochs), and another 8 days for 128×128 resolution. We separately trained on
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CelebA-HQ up to 256×256 resolution with four Tesla P100 GPUs for 10 days
(1600 epochs), and on LSUN with two Tesla P100 GPUs for 9 days.

Throughout the training, we kept the hyper-parameters fixed at λZ = 1000 d
and λX = 10 d, where d is the dimensionality of the latent space (512), taking
advantage of the hyper-parameter search done by [10]. After the progressive
growth phase of the training, we switched to λX = 15 d to emphasize sample
reconstruction [26].

4.1 CelebA and CelebA-HQ

The CelebA dataset [15] contains over 200k images with various resolutions
that can be square-cropped to 128×128. CelebA-HQ [2] is a subset of 30k of
those images that have been improved and upscaled to 1024×1024 resolution.
We train with CelebA up to 128×128 resolution, and with CelebA-HQ up to
256×256. In order to compare with previous works, we also trained our network
for 64×64 images from CelebA.

We ran our experiments as follows. Following the approach described in
Section 3.3, we trained the network progressively through each intermediate
resolution until we reach the target resolution (64×64, 128×128, or 256×256),
for the same number of steps in each stage. For the final stage with the target
resolution, we would continue training for as long as the Fréchet Inception Distance
(FID, [27]) measures of the randomly generated samples showed improvements.
During the progression of the input resolution, we adapted minibatch size to
accommodate for the available memory.

For random sampling metrics, we use FID and Sliced Wasserstein Distance
(SWD, [28]) between the training distribution and the generated distribution. FID
measures the sample quality and diversity, while SWD measures the similarity in
terms of Wasserstein distance (earth mover’s distance). Batch size is 10000 for
FID and 16384 for SWD. For reconstruction metrics, we use the root-mean-square
error (RMSE) between the original and the reconstructed image.

We present our results in three ways. First, the model must be able to recon-
struct random test set images and retain both sufficient quality and faithfulness
of the reconstruction. Often, there is a trade-off between the two [29]. Previous
models have often seemed to excel with respect to the quality of the reconstruc-
tion image, but in fact, the reconstruction turns out to be very different from the
original (such as a different person’s face). Second, we must be able to randomly
sample images from the latent space of the model, and achieve sufficient quality
and diversity of the images. Third, due to its inference capability, Pioneer net-
works can show interpolated results between input images without any additional
tricks, such as first solving a regression optimization problem for the image, as
often done with GANs (e.g. [30]).

Reconstruction. Given an unseen test image, the model should be able to
encode the relevant information (such as hair color, skin color, facial expression,
etc.) and decode it into a natural-looking face image expressing the features. As
this is not image compression, the model does not aim to replicate the input image
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Table 1: Comparison of Fréchet Inception Distance (FID) against 10,000 training
samples, Sliced Wasserstein Distance (SWD) against 16384 samples, and root-
mean-square error (RMSE) on test set, in the 64×64 and 128×128 CelebA
dataset on inference-capable networks. ProgGAN with L1 regression has the best
overall sample quality (in FID/SWD), but not best reconstruction capability (in
RMSE). A pretrained model by the author of [10] was used for AGE for 64×64.
For 128×128, we enlarged the AGE network to account for the larger inputs and
a 512-dimensional latent vector, trained until the training became unstable. ALI
was trained on default CelebA settings following [9] for 123 epochs. The error
indicates one standard deviation for separate sampling batches of a single (best)
trained model. For all numbers, smaller is better.

64×64 128×128

FID SWD RMSE FID SWD RMSE

ALI 58.88± 0.19 25.58± 0.35 18.00± 0.21 — — —
AGE 26.53± 0.08 17.87± 0.11 4.97± 0.06 154.79± 0.43 22.33± 0.74 9.09± 0.07
ProgGAN/L1 7.98± 0.06 3.54± 0.40 2.78± 0.05 — — —
Pioneer 8.09± 0.05 5.18± 0.19 1.82± 0.02 23.15± 0.15 10.99± 0.44 8.24± 0.15

per se, but capture the essentials. In Figure 1, we show reconstruction examples
for random test images in CelebA (at 128×128 resolution) with Pioneer. Under
the reconstruction images we show the four closest samples in the training set
(with respect to structural similarity [12] of the face as cropped in [2]).

We compare reconstructions against inference-capable models: AGE [10] and
ALI [9]. We also train ProgGAN for reconstruction as follows (similar attempts
have been done in, e.g., [30,31,32,33]). We train the network normally until
convergence, and then simply connect the latent vector of the discriminator to
serve also as the latent input for the generator (properly normalized). Finally, we
re-train the discriminator–generator network as an autoencoder that attempts to
reconstruct input images, with L1 reconstruction loss. During this training, we
only modify the discriminator subnetwork, since allowing the generator to change
would inevitably lead to lower-quality generated images. (We also attempted
training another fully connected layer on top of the existing hidden layer, but
did not see improved results, and training became almost prohibitively slow.)
Like most of the previous results, we find that the network (ProgGAN/L1) can
fairly well reconstruct samples that it has generated itself, but performs much
worse when given new real input images.

For networks that support both inference and generation, we can feed input
images and evaluate the output image. In Figure 4, we show the output of each
network for the given random CelebA test set images. As seen from the figure,
at 64×64 resolution, Pioneer outperforms the baseline networks in terms of
the combined output quality and faithfulness of the reconstruction. At 64×64
resolution, Pioneer’s FID score of 8.09 in Table 1 outperforms AGE and ALI,
the relevant inference baselines. ProgGAN/L1 outperforms the rest in sample
quality (FID/SWD), but is worse in faithfulness (RMSE).
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Pioneer

ProgGAN

AGE

ALI

Fig. 4: Comparison of reconstruction quality between Pioneer, ALI, and AGE
in 64×64. The first row in each set shows examples from the test set of CelebA
(not cherry-picked). The reproduced images of Pioneer are much closer to the
original than those of AGE or ALI. Note the differences in handling of the 5th
image from the left. ALI and AGE were trained as in Table 1. (For more examples,
see Supplementary Material.)

Without modifications, ALI and AGE networks have not thus far been shown
to be able to deal with 128×128 resolution or higher. We managed to run AGE
for 128×128 resolution by enlarging the AGE network to account for the larger
inputs and a 512-dimensional latent vector, and trained until the training became
unstable. For ALI, enlarging the network for 128×128 was not tried. ProgGAN
has been shown to excel in sample generation for higher resolutions, but as
explained earlier, it is not designed for reconstruction or inference. Therefore we
have only run it for 64×64, which already showed this difference.

Dreaming up random samples. A model that focuses on reconstruction is
unlikely to match the quality of the models that only focus on random sample
generation. Even though our focus is on excelling in the former category, we do
not fall far behind the state-of-the-art provided by ProgGAN in generating new
samples. Figure 3 shows samples generated by Pioneer at 64×64, 128×128, and
256×256 resolutions. The ProgGAN SWD results in [2] were based on a more
aggressive cropping of the dataset, so the values are not comparable. For AGE
and ALI, the FID and SWD scores are clearly worse (see Table 1) even at low
resolutions, and the methods do not generalize well to higher resolutions.

Inference capabilities. Finally, we provide an example of input-based interpo-
lation between different (unseen) test images. In Figure 5 we have four different
test images, one in each corner of the tile figure. Thus image A1 corresponds
to the reconstruction of Input #1, A8 to Input #2, H1 to Input #3, and H8
to Input #4. The rest of the images are produced by interpolating between the
reconstructions in the latent space—for example, between A1 and A8. As can
be seen in the figure, the latent space is well-behaved and even the glasses in
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Fig. 5: Interpolation study on test set input images at 128×128 resolution. Unlike
many works, we interpolate between the (reconstructions of) unseen test images
given as input—not between images the network has generated on its own.

Input #3 do not cause problems. We emphasize that compared to many GAN
methods, the interpolations in Pioneer can be done elegantly and without
separate optimization stage needed for each input sample.

4.2 LSUN Bedrooms

The LSUN dataset [25] contains images of various categories in 256×256 resolution
or higher. We choose the category of bedrooms, often used for testing generative
models. For humans, comparing randomly generated samples is more difficult on
this dataset than with faces, so quantitative metrics are important to separate
between the subtle differences in quality and diversity of captured features.

We ran the LSUN training similarly to CelebA, but with only a single target
resolution of 128×128. We present randomly generated samples from LSUN
bedrooms (Fig. 6) at 128×128 resolution. Comparing to the non-progressive
GANs of [14] and [34], we see that Pioneer output quality visually matches
them, while falling slightly behind the fully generative ProgGAN, as expected.
The FID of 37.50 was reached with no hyper-parameter tuning specific to LSUN.

For networks that support both inference and generation, we would not expect
to achieve the same quality metrics as with purely generative models, so these
results are not directly comparable.
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Fig. 6: Generated images of LSUN bedrooms at 128×128 resolution. Results can
be compared to the image arrays in [34], [14], and [2].

Fig. 7: Generated images of Cifar-10 at 32×32 resolution.

4.3 Cifar-10

The Cifar-10 dataset contains 60,000 labeled images at 32×32 resolution, span-
ning 10 classes. As our method is fully supervised, we do not utilize the label
information. During the training, we found that progressive growing seemed
to provide no benefits. Therefore, we trained the Pioneer model otherwise as
normal, but started at 32×32 resolution and did not use progressive growing.

We used the same architecture, losses and algorithm as for the other datasets,
instead of trying to optimize our approach to get the best results in Cifar-10.
We confirmed that the approach works, but it is not particularly suitable for this
kind of a dataset without further modifications. Generated samples are provided
in Figure 7. We believe that with some natural modifications, the model will be
able to compete with GAN-based methods, but we leave this for our future work.
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5 Discussion and Conclusion

In this paper, we proposed a generative image autoencoder model that is trained
with the combination of adversarial and reconstruction losses in sample and
latent space, using progressive growing of generator and encoder networks, but
without a separate GAN-like discriminator. We showed that this model can
both generate sharp images—at least up to 256×256 resolution—and carry out
inference on input images at least up to 128×128 resolution with sharp output,
while having a simpler architecture than the state-of-the-art of purely generative
models [2]. We demonstrated the inference via sample reconstruction and smooth
interpolation in the latent space, and showed the overall generative capability by
generating new random samples from the latent space and measuring the quality
and diversity of the generated distribution against baselines.

We emphasize that evaluation of generative models is heavily dependent on
the resolution, and there is a multitude of models that have been shown to work
on 64×64 resolution, but not on 128×128 or above. Reaching higher resolutions
is not only a matter of raw compute, but the model needs to be able to cope
with the increasing information and be regularised suitably in order not to loose
the representative power or become instable.

We found that training is more stable using spectral normalization, which
also suits our non-GAN loss architecture and loss. The model provides image
reconstruction results with larger image resolutions than previous state-of-the-art.
Importantly, our model has only few hyper-parameters and is robust to train.
The only hyper-parameter that typically needs to be tuned between datasets is
the number of epochs spent on intermediate resolutions. Our results indicate that
the GAN paradigm of a separate discriminator network may not be necessary for
learning to infer and generate image data sets. GANs do currently remain the
best option if one is only interested in generating random samples. Like GANs,
our model is heavily based on the general idea of ‘adversarial’ training, construed
as setting the generator–encoder pair up with opposite gradients to each other
with respect to the source of the data (that is, simulated vs. observed).

As Karras et al. [2] point out for GANs, the principle of growing the network
progressively may be more important than the specific loss function formulation.
Likewise, even though the AGE formulation for the latent space loss metrics is
relatively simple, we believe that there are many ways in which the encoder can
be set up to achieve and exceed the results we have demonstrated here.

In future work, we will also continue training the network to carry out faithful
reconstructions at 256×256, 512×512, and 1024×1024 resolutions, omitted from
this paper primarily due to the extensive amount of computation (or preferably,
further optimization) required. We will also further investigate whether the
CelebA-HQ dataset is sufficiently diverse for this purpose.
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Supplementary Material for Pioneer Networks:
Progressively Growing Generative Autoencoder

In this supplementary, we provide additional experiment figures that provide a
broader overview on how the proposed method performs on CelebA and CelebA-
HQ. We also include generated samples from the ALI and AGE methods.
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Fig. 8: Pioneer interpolation example on test set input images at 128×128
resolution.
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Fig. 9: Examples of Pioneer network reconstruction (CelebA) quality in
128×128 resolution.



Fig. 10: Pioneer random samples (CelebA-HQ) at 256×256 resolution.



Fig. 11: Pioneer random samples (CelebA) at 128×128 resolution.

Fig. 12: AGE random samples (CelebA) at 128×128 resolution.



Fig. 13: AGE random samples (CelebA) at 64×64 resolution.

Fig. 14: ALI random samples (CelebA) at 64×64 resolution.



Fig. 15: Pioneer random samples (CelebA) at 64×64 resolution.


