Skip to main content

A Deep Blind Image Quality Assessment with Visual Importance Based Patch Score

  • Conference paper
  • First Online:
  • 2097 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Abstract

Convolutional neural networks (CNNs)-based no-reference image quality assessment (NR-IQA) suffers from insufficient training data. The conventional solution is splitting the training image into patches, assigning each patch the quality score, while the assignment of patch score is not consistent with the human visual system (HVS) well. To address the problem, we propose a patch quality assignment strategy, introducing the weighting map to describe the degree of visual importance of each distorted pixel, integrating the weighting map and the feature map to pool the quality score of each patch. With the patch quality, a CNNs-based NR-IQA model is trained. Experimental results demonstrate that proposed method, named as blind image quality metric with improved patch score (BIQIPS), improves the performance on most of the distortion types, especially on the types of local distortions, and achieves state-of-the-art prediction accuracy among the NR-IQA metrics.

Supported by National Nature Science Foundation of China (No. 61572058) and National Key R&D Program of China (No. 2017YFB1002702).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wu, H.R., Rao, K.R.: Digital Video Image Quality and Perceptual Coding. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  2. Ahmad, R., Halsall, F., Zhang, J.S.: The transmission of compressed video over ATM networks. In: Teletraffic Symposium, 11th Performance Engineering in Telecommunications Networks, pp. 1–20. IEE Eleventh UK, IET (1994)

    Google Scholar 

  3. Nakayama, Y., et al.: Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237, 945–951 (2005)

    Article  Google Scholar 

  4. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733–1740 (2014)

    Google Scholar 

  5. Heng, W., Jiang, T.: From image quality to patch quality: an image-patch model for no-reference image quality assessment. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1238–1242. IEEE (2017)

    Google Scholar 

  6. Narvekar, N.D., Karam, L.J.: A no-reference perceptual image sharpness metric based on a cumulative probability of blur detection. In: 2009 International Workshop on Quality of Multimedia Experience, QoMEx 2009, pp. 87–91. IEEE (2009)

    Google Scholar 

  7. Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17, 513–516 (2010)

    Article  Google Scholar 

  8. Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Signal Process. 2013, 53 (2013)

    Article  Google Scholar 

  9. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21, 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1098–1105. IEEE (2012)

    Google Scholar 

  11. Zhang, L., Gu, Z., Liu, X., Li, H., Lu, J.: Training quality-aware filters for no-reference image quality assessment. IEEE Multimedia 21, 67–75 (2014)

    Article  Google Scholar 

  12. Wang, H., Zuo, L., Fu, J.: Distortion recognition for image quality assessment with convolutional neural network. In: 2016 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2016)

    Google Scholar 

  13. Liang, Y., Wang, J., Wan, X., Gong, Y., Zheng, N.: Image quality assessment using similar scene as reference. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_1

    Chapter  Google Scholar 

  14. Kim, J., Lee, S.: Fully deep blind image quality predictor. IEEE J. Sel. Top. Signal Process. 11, 206–220 (2017)

    Article  Google Scholar 

  15. Bosse, S., Maniry, D., Müller, K.R., Wiegand, T., Samek, W.: Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans. Image Process. 27, 206–219 (2018)

    Article  MathSciNet  Google Scholar 

  16. Zhang, L., Shen, Y., Li, H.: VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23, 4270–4281 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kim, J., Lee, S.: Deep learning of human visual sensitivity in image quality assessment framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  22. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  23. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image quality assessment database release 2 (2005, 2016)

    Google Scholar 

  24. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: Tid 2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10, 30–45 (2009)

    Google Scholar 

  25. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  26. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20, 209–212 (2013)

    Article  Google Scholar 

  27. Lin, K.Y., Wang, G.: Hallucinated-IQA: no-reference image quality assessment via adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 732–741 (2018)

    Google Scholar 

  28. Liu, X., van de Weijer, J., Bagdanov, A.D.: RankIQA: learning from rankings for no-reference image quality assessment. Computer Vision and Pattern Recognition, https://arxiv.org/abs/1707.08347v1 (2017)

  29. Xu, J., Ye, P., Li, Q., Du, H., Liu, Y., Doermann, D.: Blind image quality assessment based on high order statistics aggregation. IEEE Trans. Image Process. 25, 4444–4457 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Z., Wang, X., Wang, K., Liang, X. (2019). A Deep Blind Image Quality Assessment with Visual Importance Based Patch Score. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics