Skip to main content

Unsupervised Transformation Network Based on GANs for Target-Domain Oriented Multi-domain Image Translation

  • Conference paper
  • First Online:
  • 2081 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Abstract

Multi-domain image translation with unpaired data is a challenging problem. This paper proposes a generalized GAN-based unsupervised multi-domain transformation network (UMT-GAN) for image translation. The generation network of UMT-GAN consists of a universal encoder, a reconstructor and a series of translators corresponding to different target domains. The encoder is used to learn the universal information among different domains. The reconstructor is designed to extract the hierarchical representations of the images by minimizing the reconstruction loss. The translators are used to perform the multi-domain translation. Each translator and reconstructor are connected to a discriminator for adversarial training. Importantly, the high-level representations are shared between the source and multiple target domains, and all network structures are trained together by using a joint loss function. In particular, instead of using a random vector z as inputs to generate high-resolution images, UMT-GAN rather employs the source domain images as the inputs of the generator, hence help the model escape from collapsing to a certain extent. The experimental studies demonstrate the effectiveness and superiority of the proposed algorithm compared with several state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, Barcelona, pp. 2172–2180 (2016)

    Google Scholar 

  2. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: Proceedings of the IEEE International Conference on Computer Vision, Santiago, pp. 415–423 (2015)

    Google Scholar 

  3. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: The IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City (2018)

    Google Scholar 

  4. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  5. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)

    Google Scholar 

  6. Dolhansky, B., Canton Ferrer, C.: Eye in-painting with exemplar generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, pp. 7902–7911 (2018)

    Google Scholar 

  7. Dong, C., Chen, C.L., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  8. Gan, Z., et al.: Triangle generative adversarial networks. In: Advances in Neural Information Processing Systems, Long Beach, pp. 5247–5256 (2017)

    Google Scholar 

  9. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 2414–2423 (2016)

    Google Scholar 

  10. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  11. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of psnr in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5967–5976. IEEE, Honolulu (2017)

    Google Scholar 

  13. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  14. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: Precup, D., Teh, Y.W. (eds.) International Conference on Machine Learning, vol. 70, pp. 1857–1865. PMLR, Sydney, Australia (2017)

    Google Scholar 

  15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, San Diego (2015)

    Google Scholar 

  16. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, pp. 8183–8192 (2018)

    Google Scholar 

  17. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, pp. 105–114 (2017)

    Google Scholar 

  18. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: Proceedings of the European Conference on Computer Vision, Munich, Germany, pp. 35–51(2018)

    Google Scholar 

  19. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2018)

    Google Scholar 

  20. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, Long Beach, pp. 700–708 (2017)

    Google Scholar 

  21. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in Neural Information Processing Systems, Barcelona, pp. 469–477 (2016)

    Google Scholar 

  22. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, Santiago, pp. 3730–3738 (2015)

    Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 3431–3440 (2015)

    Google Scholar 

  24. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  25. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 2536–2544 (2016)

    Google Scholar 

  26. Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, pp. 2482–2491 (2018)

    Google Scholar 

  27. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations (2016)

    Google Scholar 

  28. Regmi, K., Borji, A.: Cross-view image synthesis using conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, pp. 3501–3510 (2018)

    Google Scholar 

  29. Tyleček, R., Šára, R.: Spatial pattern templates for recognition of objects with regular structure. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 364–374. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_39

    Chapter  Google Scholar 

  30. Wang, C., Xu, C., Wanga, C., Tao, D.: Perceptual adversarial networks for image-to-image transformation. IEEE Trans. Image Process. 27(8), 4066–4079 (2018)

    Article  MathSciNet  Google Scholar 

  31. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, pp. 8798–8807 (2018)

    Google Scholar 

  32. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  34. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  35. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: IEEE International Conference on Computer Vision, pp. 2868–2876. IEEE, Venice (2017)

    Google Scholar 

  36. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  37. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, Venice, pp. 2242–2251 (2017)

    Google Scholar 

  38. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems, Long Beach, CA, pp. 465–476 (2017)

    Google Scholar 

Download references

Acknowledgment

The authors are grateful for the support of the National Natural Science Foundation of China (61572104, 61402076, 61502072), the Fundamental Research Funds for the Central Universities (DUT17JC04), and the Project of the Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University (93K172017K03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, H., Yao, Y., Chen, Z., Sun, L. (2019). Unsupervised Transformation Network Based on GANs for Target-Domain Oriented Multi-domain Image Translation. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics