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Abstract. The model reduction problem that eases the computation
costs and latency of complex deep learning architectures has received an
increasing number of investigations owing to its importance in model de-
ployment. One promising method is knowledge distillation (KD), which
creates a fast-to-execute student model to mimic a large teacher network.
In this paper, we propose a method, called KDFM (Knowledge Distil-
lation with Feature Maps), which improves the effectiveness of KD by
learning the feature maps from the teacher network. Two major tech-
niques used in KDFM are shared classifier and generative adversarial
network. Experimental results show that KDFM can use a four layers
CNN to mimic DenseNet-40 and use MobileNet to mimic DenseNet-100.
Both student networks have less than 1% accuracy loss comparing to
their teacher models for CIFAR-100 datasets. The student networks are
2-6 times faster than their teacher models for inference, and the model
size of MobileNet is less than half of DenseNet-100’s.

Keywords: Knowledge Distillation · Model Compression · Generative
Adversarial Network.

1 Introduction

Deep learning has shown its capability of solving various computer vision prob-
lems, such as image classification [18] and object detection [5]. Its success also
enables many related applications, such as self-driving cars [2], medical diagnosis
[22], and intelligent manufacturing [32].

However, the state-of-the-art deep learning models usually have large memory
footprints and require intensive computational power. For instance, VGGNet [31]
requires more than 100 million parameters and more than 15 giga floating-point-
operations (GFLOPs) to inference an image of 224×224 resolution. It is difficult
to deploy these models on some platforms with limited resources, such as mobile
devices, or Internet of Things (IOT) devices. In addition, the inference time may
be too long to satisfy the real-time requests of tasks.

Many methods have been proposed to reduce the computational costs of
deep learning models during the inference time. For instance, the weight quan-
tization method [14] reduces the network size by quantizing the network param-
eters. Structure pruning [7] is another example that removes the unnecessary
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parameters or channels of a trained convolutional neural network (CNN), and
then fine-tunes the model to gain higher accuracy. These methods have achieved
competitive accuracy with less model size comparing to those of original models.
Although they can effectively reduce the model sizes and inference time, their
operations are usually not matching the instructions of commodity acceleration
hardware, such as GPU or TPU. As a result, the real performance gain of those
methods may not be significant comparing to the original models with hardware
acceleration.

Another promising directions of model reduction is Knowledge Distillation
(KD) [10], whose idea is to train a student network to mimic the ability of a
teacher model. The student model is usually smaller or faster-to-execute than the
teacher model. Hinton & Dean [10] coined the name of Knowledge Distillation
(KD). They trained student networks by the “soft target”, a modify softmax
function which can provide more information than the traditional softmax func-
tion. The experiment shows KD can improve the performance of a single shallow
network by distilling the knowledge in an ensemble model. Romero & Bengio
[27] extended the idea of KD and proposed FITNET. They trained thinner and
deeper student networks by the “intermediate-level hint”, which is from the hid-
den layers of the teacher network, and the “soft target” to learn the teacher
network. The results show that FITNET can use fewer parameters to mimic the
teacher network. In [34], Xu & Huang proposed the method that uses conditional
adversarial networks to make student networks learn the logits of the teacher
networks. Their experiments showed that it can further improve the performance
of student models trained by traditional KD.

However, those KD methods only learn the logits of teacher models. They are
usually not powerful enough to make student models mimic all kinds of teacher
models well. They often need to customize the student models for specific archi-
tectures. In addition, as the deep models become more and more complicated,
the effectiveness of previous methods for knowledge distillation decreases. One
example is DenseNet [12], which connects all layers directly with each other,
and requires more computation in inference time. In our experiments, the simple
CNN student models learned from previous methods cannot achieve the similar
accuracy as the teacher model.

In this paper, we propose a method, called KDFM (Knowledge Distillation
with Feature Maps), which learns the feature maps from the teacher model. For
the application of image classification, feature maps often provide more informa-
tion than logits. The feature maps in the last layer are used because they possess
the high level features of the input images, which are the most informative for
classification. KDFM utilizes two techniques to distill the knowledge of feature
maps. First, it lets the teacher model and the student model share the classifier.
Through the training of the shared classifier, the student model can learn the
feature maps from the teacher. Second, the idea of generative adversarial net-
works (GANs) [6] is used to improve the learning process. The feature map in
CNN is a special type of images. During the learning process, the discrimina-
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tor is forcing the student model (generator) to generate similar feature maps to
those of the teacher model (inputs of GANs).

Although the method could be generally applied to other types of networks,
we employ the DenseNets as the teacher models to illustrate the idea and to
demonstrate its effectiveness in the experiments. Unlike FITNET [27] whose
student models are thin and deep, we let the student models be shallow and fat,
because such kind of networks are easier to be parallelized on modern accelera-
tors, such as GPU.

We validated the effectiveness of KDFM using CIFAR-100 datasets [17]
and ImageNet datasets [4]. The first experiment uses a simple student network
which only contains 4 convolutional layers and a fully-connected layer to mimic
DenseNet-40 (DenseNet with 40 layers) on CIFAR-100. The result shows the stu-
dent model generated by KDFM has less than 1% accuracy loss and 2 times faster
inference time comparing to DenseNet-40, which is better than other methods.
The second experiment trains the model of MobileNet [11], a state-of-the-art
network for mobile and embedded platforms, to mimic DenseNet-100 (DenseNet
with 100 layers) on CIFAR-100. The results show that the student model is
more than 6 times faster than DenseNet-100 in terms of inference time, with
only half model size and less than 1% accuracy loss. The third experiment uses
MobileNet v2 [29] to mimic ResNet-152 [9] on ImageNet, and the accuracy of
KDFM is better than other KD methods.

The rest of paper is organized as follows. Section 2 gives a brief illustration of
knowledge distillation (KD) and generative adversarial networks (GANs). Sec-
tion 3 introduces the design of KDFM to construct a student model. Section
4 shows the experimental results and the performance comparison with other
methods. The conclusion and future work are presented in the last section.

2 Related Work

2.1 Knowledge Distillation

In [1], Ba & Caruna asked an interesting question, “Do Deep Nets Really Need to
be Deep?” Their answer is that shallow nets can be trained to perform similarly
to complex, well-engineered, deeper convolutional models. The method they used
to train shallow networks is mimicking the teacher networks’ logits, the value
before the softmax activation. In 2017, authors presented more experimental
results in [33].

Hinton & Dean [10] generalized this idea as Knowledge Distillation (KD).
The concept of knowledge distillation is to train a student network by a hard
target PH and a soft target PS :

PH(x) = softmax(x) (1)

PS(x, t) = softmax
(x

t

)

(2)
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where x are logits in a neural network, and t is a hyper-parameter, t > 1, to
soften the probability distribution over classes. A higher value of t could provide
more information.

Let xT be the logits of the teacher network and xS be the logits of the student
network. The goal of student network is to optimize the loss function

LKD = λLH + (1 − λ)LS , (3)

where

LH = H(PH(xS), y)) and (4)

LS = H(PS(xS , t), PS(xT , t)) (5)

and y is ground-truth label. They trained shallow networks by the “soft target” of
teacher networks. KD softens the output of the softmax function, providing more
information than traditional softmax functions. The experiment in this paper
shows KD can improve the performance of a model by distilling the knowledge
in an ensemble model into a single model.

Romero & Bengio [27] proposed FITNET, which extends the idea of KD by
using “intermediate-level hints” from the hidden layers of the teacher network to
guide the student networks. They train thinner and deeper student networks to
learn the intermediate representations and the soft target of the teacher network.
The results show that the student network of FITNET can perform comparable
or even better than the teacher network with fewer parameters.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have shown impressive results for un-
supervised learning tasks, such as image generation [6], image synthesis [26], and
image super-resolution [19]. A GAN usually consists of two modules: a gener-
ator (G) and a discriminator (D). In a typical GAN model, the discriminator
learns to distinguish real samples and fake results produced by the generator,
and the generator learns to create samples which can be judged as real ones by
the discriminator.

Mirza & Osindero [21] extended GANs to a conditional model by feeding
extra information, such as class labels, to the generator and discriminator. Chen
& Abbeel [3] proposed InfoGAN, an information-theoretic extension to GANs,
which is able to learn disentangle representation. Some studies [24,28,25] modify
the discriminator to contain an auxiliary decoder network that can output class
labels for training data.

2.3 DenseNet

Huang &Weinberger [12] proposed a new architecture, DenseNet, which connects
all layers directly with each other. This idea is extended from ResNet [8] which
aggregates previous feature maps and feeds the summation into a layer. Different
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from ResNet, DenseNet concatenates the feature maps from all preceding layers.
It requires fewer parameters than traditional convolutional networks, because
it doesn’t need to relearn redundant feature maps. It performs state-of-the-art
results on most classification benchmark tasks.

2.4 MobileNet

Howard & Kalenichenko [11] proposed MobileNet for mobile and embedded plat-
forms. MobileNet uses depth-wise separable convolutions to reduce the compu-
tation and build a light-weight network. MobileNet allows to build the model
on resource and accuracy trade-offs by using width multiplier and resolution
multiplier. The effectiveness of MobileNet has been demonstrated across a wide
range of applications.

3 The Design of KDFM

KDFM use a GAN with an auxiliary decoder network that can output class labels
for training data. More specifically, it consists of three components, a generator
G, a discriminator D, and a classifier C. The generator G is a feature extractor
who produces the feature maps from the input images. The discriminator D

distinguishes the real feature map, generated by the teacher network, and the
fake feature map, generated by G. The classifier C is a feature decoder, whose
inputs are also feature maps, and outputs are the hard target and the soft target,
as defined in (1) and (2).

The goal of KDFM is to make G learn the feature map from the teacher
network, and to train C to classify the images based on the feature maps. Two
objective functions, adversarial loss and knowledge distillation loss, are designed
to achieve the goal. The adversarial loss of KDFM is adopted from the objective
function of LSGAN [20],

LadvD =
1

2
[D(G(X))]2 +

1

2
[D(T (X))− 1]2 (6)

LadvG =
1

2
[D(G(X))− 1]2 (7)

where X denotes the input images, G(X) is the feature maps generated by G,
and T (X) is the feature maps generated by the teacher model. The function D is
designed to discriminate between the real feature map T (X) and the fake feature
map G(X). We chose LSGAN because it is the state-of-the-art GAN model
and the range of its loss function can be easily combined with the knowledge
distillation loss.

The knowledge distillation loss in KDFM is defined as below:

LKD = λLH + (1− λ)LS (8)
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where

LH = H(PH(C(G(X))), PH(z)) +H(PH(C(T (X))), PH(z)) (9)

LS = H(PS(C(G(X)), t), PS(z, t)) +H(PS(C(T (X)), t), PS(z, t)) (10)

the value z is the logits from the teacher network, H refers to cross-entropy, and
λ is a hyper-parameter, 0 < λ < 1, controlling the ratio of LH and LS. If the
student model is similar to the teacher model, λ need not be large. Besides, we
change the ground-truth label to the label of the teacher network in (9). The
experiment also shows that it achieves better accuracy.

Unlike traditional GAN, the loss function of G in KDFM combines the ad-
versarial loss and the knowledge distillation loss,

LG = LadvG + αLKD (11)

where α is a hyper-parameter to balance the scale of the adversarial loss and the
knowledge distillation loss.

The training of KDFM is to minimize the loss functions of three components
simultaneously. For the generator G, the loss function is LG, as defined in (11);
for the discriminator D, the loss function is LadvD, as defined in (6); and for the
classifier C, the loss function is LKD, defined in (8).

Input 
image

Teacher 
network

G

Real

feature map

Fake

feature map

D

C

Real / Fake

Hard target

Soft target

Student network

Fig. 1. Overview of KDFM, consisting of three module, a discriminator D, a generator
G, and a classifier C. G and C compose a student network. The student network outputs
the hard target for the inference.

Figure 1 shows the network architecture of KDFM. The student network
consists of two parts, the feature extractor G and the feature decoder C. The
feature extractor generates the feature map, and the feature decoder classifies
the feature map to probability distribution over classes. After each components
are well-trained, the student network is constructed from G and C. In our design,
C only has a pooling layer and one fully connected layer.

The training process works like the alternative least square (ALS) method.
Let’s use LH to illustrate the idea, since LS has the same structure. To minimize
H(PH(C(T (X))), PH(z)), the classifier C needs to learn teacher network’s hard
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target PH(z). Meanwhile, the term LKD is also added to the loss function of the
student network. To minimize the H(PH(C(G(X))), PH (z)), the student model
must output feature maps G(X) similar to T (X), so that PH(C(G(X))) can
approximate PH(z).

4 Experiments

We validated the effectiveness of KDFM using CIFAR-100 and ImageNet datasets.
We used DenseNet and ResNet as the teacher models, whose implementations
[16] are in TensorFlow, and followed the standard training process with data
augmentation. Two types of student models are used in the experiments. The
first kind of student models are simple convolutional neural networks (CNNs)
that consist of several convolutional layers and one fully-connected layer, with
ReLU activation [23], batch normalization [15], and max-pooling layers. The con-
volutional layers are with 3× 3 kernel size, and 64 to 1024 channels, depending
on the parameter sizes. The second student model is MobileNet, which has a
Tensorflow implementation [30] on Github. We modified the student models so
that the dimension of student model’s feature maps equal to the teacher model’s.
Without further specification, the hyper-parameter t and λ, as defined in (2) and
(8), are set to 10 and 0.1 respectively. The hyper-parameters α, defined in (11),
is set to 10. The performance metrics of models are the accuracy and the infer-
ence time, which is obtained from the average inference time of predicting one
CIFAR-100 image 1000 times on one NVIDIA 1080Ti GPU.

4.1 Teacher Network: DenseNet-40

This set of experiments uses various CNN models to mimic DenseNet-40. We
compare the results of KDFM with other knowledge distillation methods, and
justify the influence of four factors to the accuracy and the inference time: the
number of layers, the number of parameters, the value of hyper-parameter t and
λ, defined in (2) and (8).

Comparison with other methods. We compared the accuracy of the student
network generated by KDFM and other two knowledge distillation methods:
logits mimic learning [1] and KD [10]. We also included the results of the model
trained without any KD process as the baseline. The teacher model is DenseNet-
40 and the student model has 8 convolutional layers and 8 million trainable
parameters. Table 1 shows the results of different training methods. The result
indicates that the student model trained by KDFM can acheive similar accuracy
as the teacher model’s. Logits mimic learning performs poorly. Its accuracy is
even lower than that of the baseline in this case.

Different number of layers. Table 2 summarizes setting of student and
teacher models, and their experimental results. There are four student mod-
els which have 2, 4, 6, 8 convolutional layers respectively. We fixed the number
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Method Accuracy

Baseline 68.53%
Logits Mimic Learning 50.95%
KD 69.14%
KDFM 74.10%
Teacher(DenseNet-40) 74.23%

Table 1. Testing accuracy for training the student networks with 8 convolutional layers
and 8M parameters by Baseline (typical training process), Logits Mimic Learning, KD,
and KDFM.

of parameters to 8 millions. As can be seen, when the number of convolution
layers is larger than 4, the student models achieve similar accuracy as the teacher
model. Although the model size is not small, the inference time of student mod-
els is much shorter than that of the teach network. Particularly, the student
network with 4 convolution layers has better accuracy than the teacher model,
and its inference time is only half of the teacher model’s.

Figure 2 plots the accuracy of student networks for different number of layers.
A clear trend is that when the number of layers is larger than 4, the student
model can achieve similar accuracy as the teacher model. However, when the
number of layers is small, even with a large number of parameters, the student
model cannot learn well as the teacher model. This result matches the conclusion
made in [33].

Model No. Parameters Accuracy Inference time

2 conv ∼ 8M 59.19% 3.65ms
4 conv ∼ 8M 74.77% 2.46ms
6 conv ∼ 8M 74.08% 2.59ms
8 conv ∼ 8M 74.10% 2.75ms
DenseNet-40(Teacher) 1.1M 74.23% 5.28ms

Table 2. Testing accuracy and inference time for the student networks with 2, 4, 6,
and 8 convolutional layers mimicking DenseNet-40 by KDFM.

Different number of parameters. Table 3 lists the setting and the results of
six student models with different number of parameters. The number of layers
of CNNs is fixed at 4, and the number of parameters are varied from 0.5M, 1M,
2M, 4M, 6M, to 8M. As can be seen, the more parameters, the better accuracy
of the model. When the number of parameters is larger than or equal to 4M, the
accuracy of student model is similar to that of the teacher model. The difference
is less than 1%. Figure 3 shows this trend.
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Fig. 2. Accuracy of student networks with different convolution layers and 8 million
parameters, the horizontal line is the accuracy of the teacher network, DenseNet-40.

However, the inference time of student models is also increasing as the number
of parameter increases. Nevertheless, even when the number of parameter is 8M,
the inference time is still less than half of the teacher model’s. The trade-off
between accuracy and the inference time can be used to adjust the student
models to fit the requirements of deployments.

Model No. Parameters Accuracy Inference time

4conv-0.5M ∼ 0.5M 65.76% 1.61ms
4conv-1M ∼ 1M 67.83% 1.65ms
4conv-2M ∼ 2M 71.12% 1.73ms
4conv-4M ∼ 4M 73.77% 2.01ms
4conv-6M ∼ 6M 73.84% 2.32ms
4conv-8M ∼ 8M 74.77% 2.46ms
DenseNet-40(Teacher) 1.1M 74.23% 5.28ms

Table 3. Testing accuracy and inference time for the student networks with 4 convolu-
tional layers and different numbers of parameters mimicking DenseNet-40 by KDFM.

Different hyper-parameter t. We validated the influence of hyper-parameter
t, defined in (2), to the accuracy of student models. Table 4 and Table 5 show
the results for two models, one is a 4 layer CNNs with 2M parameters (small
model), and the other is a 4 layer CNNs with 8M parameters (large model). As
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Fig. 3. Accuracy of student networks with 4 convolution layers and different number
of parameters, the horizontal line is the accuracy of the teacher network, DenseNet-40.

can be seen, the best result occurs at t = 5 for the small model and at t = 10 for
the large model. This phenomenon can be reasoned as follows. When t is small,
the soft target does not have enough relaxation to encourage student networks
learning the teacher model. On the other hand, when t is too large, the teacher
model losses the disciplines to coach the student models. For weaker models,
smaller t can usually give better accuracy, because they need clearer guidelines
to learn.

Model t Accuracy

4conv with t = 2 2 70.14%
4conv with t = 5 5 71.48%
4conv with t = 10 10 71.12%
4conv with t = 50 50 67.35%
4conv with t = 100 100 67.51%
DenseNet-40(Teacher) - 74.23%

Table 4. Testing accuracy for the student networks with 4 convolutional layers, 2M
parameters, and different hyper-paramter t mimicking DenseNet-40 by KDFM.

Different hyper-parameter λ. This experiment compares the accuracy of
student models for different hyper-parameter λ, defined in (8). Table 11 and
Table 7 show the results for two models, one is a 4 layer CNNs with 2M param-
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Model t Accuracy

4conv with t = 2 2 73.11%
4conv with t = 5 5 74.07%
4conv with t = 10 10 74.77%
4conv with t = 50 50 71.44%
4conv with t = 100 100 70.72%
DenseNet-40(Teacher) - 74.23%

Table 5. Testing accuracy for the student networks with 4 convolutional layers, 8M
parameters, and different hyper-paramter t mimicking DenseNet-40 by KDFM.

eters (small model), and the other is a 4 layer CNNs with 8M parameters (large
model). For both models, the best result occurs at λ = 0.1.

The results indicate the importance of soft target in knowledge distillation.
For λ = 0.1, the value of soft target dominates the loss function of KD. This
shows that with more information, student models can learn better. However, if
λ is set to 0, the information of hard target totally disappears, and the student
model cannot learn the best results from the teacher model.

Model λ Accuracy

4conv with λ = 0 0 70.87%
4conv with λ = 0.1 0.1 71.12%
4conv with λ = 0.4 0.4 67.30%
4conv with λ = 0.7 0.7 66.96%
DenseNet-40(Teacher) - 74.23%

Table 6. Testing accuracy for the student networks with 4 convolutional layers, 2M
parameters, and different hyper-parameter λ mimicking DenseNet-40 by KDFM.

Model λ Accuracy

4conv with λ = 0 0 74.11%
4conv with λ = 0.1 0.1 74.77%
4conv with λ = 0.4 0.4 73.18%
4conv with λ = 0.7 0.7 71.68%
DenseNet-40(Teacher) - 74.23%

Table 7. Testing accuracy for the student networks with 4 convolutional layers, 8M
parameters, and different hyper-parameter λ mimicking DenseNet-40 by KDFM.
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Different hyper-parameter α. The hyper-parameter α controls the ratio of
GAN and KD in generator’s loss function, LG = LadvG + αLKD. Table 8 lists
the achieved accuracy of student model for different α. The best result occurs
at α = 10 in our experiments. If we take off GAN LadvG, as shown in the third
line, the accuracy also declines.

Model α Accuracy

4conv with α = 1 1 69.58%
4conv with α = 10 10 70.62%
4conv without LadvG LG = LKD 69.57%
DenseNet-40(Teacher) - 74.23%

Table 8. Testing accuracy for the student networks with 4 convolutional layers, 6M
parameters, and different hyper-parameter α mimicking DenseNet-40 by KDFM.

4.2 Teacher Network: DenseNet-100

Since one of the goals for knowledge distillation is to create models easy to deploy
on small devices, in this experiment, we used MobileNet (student network) to
mimic DenseNet-100 (teacher network). For comparison, we included the results
of two other CNNs trained by KDFM. Both CNNs have 8 convolutional layers,
and one has 20.2M parameters; the other has 28.1M parameters. In addition,
the result of MobileNet, trained directly without KDFM, is also included as the
baseline.

Table 9 summarizes the results. The first three rows are the networks trained
by KDFM, the fourth row is the result for MobileNet without KD, and the last
row is the result of DenseNet-100. As shown in the first two rows, simple CNNs,
even with large amount of parameters, cannot achieve good accuracy as the
teacher model. But their inference times (4.56ms and 5.7ms) are much shorter
than that of the original DenseNet-100 (18.02ms).

The MobileNet trained by KDFM, as shown in the third row, has the best
result in terms of model size, accuracy, and inference time. The number of pa-
rameters of MobileNet (3.5M) is less than half of DenseNet-100’s (7.2M), and
the inference time (2.79ms) is about 6 times faster than the original DenseNet-
100 (18.02ms). Comparing to the baseline, MobileNet without KD, the Mo-
bileNet trained by KDFM can achieve 77.20% accuracy, which is close to that
of DenseNet-100 (77.94%).

4.3 Teacher Network: CondenseNet

We use CondenseNet-86 [13] (with stages [14, 14, 14] and growth [8, 16, 32]) as
the teacher network and a smaller CondenseNet-86 (with stages [14, 14, 14] and
growth [8, 16, 16]) as the student network using CIFAR-100 dataset. The results
are shown in Table 10. The model trained by KDFM is improved.
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Model No.Parameters Accuracy Inference time

8 conv-20M (KDFM) 20.2M 74.36% 4.56ms
8 conv-28M (KDFM) 28.1M 75.25% 5.7ms
MobileNet (KDFM) 3.5M 77.20% 2.79ms
MobileNet(Baseline) 3.5M 72.99% 2.79ms
DenseNet-100(Teacher) 7.2M 77.94% 18.02ms

Table 9. Testing accuracy and inference time for training simple CNNs with 8 convo-
lutional layers and 20.2M, 28.1M parameters, and MobileNet as student networks by
KDFM.

Model No. Parameters FLOPs Accuracy

Smaller CondenseNet-86 (Baseline) 0.29M 49.95M 74.13%
Smaller CondenseNet-86 (KDFM) 0.29M 49.95M 75.01%
CondenseNet-86(Teacher) 0.55M 65.85M 76.02%

Table 10. Testing accuracy for the smaller CondenseNet-86 mimicking CondenseNet-
86 by KDFM and Baseline (typical training process) on CIFAR-100 dataset.

4.4 ImageNet dataset

We used MobileNet v2 as the student model to mimic the pre-trained ResNet-
152 using ImageNet dataset. Table 11 shows the experimental results of the
testing accuracy using different training methods for the student model. As can
be seen, the baseline method (without KD) can only achieve 68.41% accuracy.
The KDFM model has the best result, 71.82%.

Model Accuracy Inference time FLOPs

MobileNet v2(KDFM) 71.82% 6ms 300M
MobileNet v2(KD) 70.16% 6ms 300M
MobileNet v2(KDFM without LadvG & LG = LKD ) 71.32% 6ms 300M
MobileNet v2(Baseline) 68.01% 6ms 300M
ResNet-152(Pre-trained teacher) 78.31% 21ms 11G

Table 11. Testing accuracy for MobileNet v2 as the student networks, trained by
KDFM, KD, KDFM without LadvG, and MobileNet v2 (baseline), to mimic ResNet-
152 by KDFM.

5 Conclusion and Future Work

We presented a novel architecture, KDFM, which utilizes generative adversarial
networks to achieve knowledge distillation. The experiments demonstrate that
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KDFM can use simple convolutional neural networks with shallower layers and
larger number of trainable parameters to mimic state-of-the-art complicated
networks with comparable accuracy and faster inference time.

The idea of using generative adversarial networks for knowledge distillation is
not limited to the DenseNet or image classification tasks, but can be generalized
to other types of networks for different applications. It is also orthogonal to
other model compression methods, which means one can use KDFM to generate
a student model and apply model pruning or other compression techniques to
further reduce the model size and improve the performance. Last, what is the
best student models to be used in KDFM still requires more investigations. One
good feature of KDFM is that other objectives, such as model size, inference
speed, power consumption, fitting specific hardware, can be incorporated into
the student model design.
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