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Abstract. Analyzing videos of human actions involves understanding
the temporal relationships among video frames. State-of-the-art action
recognition approaches rely on traditional optical flow estimation meth-
ods to pre-compute motion information for CNNs. Such a two-stage ap-
proach is computationally expensive, storage demanding, and not end-
to-end trainable. In this paper, we present a novel CNN architecture
that implicitly captures motion information between adjacent frames. We
name our approach hidden two-stream CNNs because it only takes raw
video frames as input and directly predicts action classes without explic-
itly computing optical flow. Our end-to-end approach is 10x faster than
its two-stage baseline. Experimental results on four challenging action
recognition datasets: UCF101, HMDB51, THUMOS14 and ActivityNet
v1.2 show that our approach significantly outperforms the previous best
real-time approaches.

Keywords: Action recognition · Optical flow · Unsupervised learning.

1 Introduction

The field of human action recognition has advanced rapidly over the past few
years. We have moved from manually designed features [3, 23] to learned con-
volutional neural network (CNN) features [11, 21]; from encoding appearance
information to encoding motion information [19]; and from learning local fea-
tures to learning global video features [13, 25]. The performance has continued
to soar higher as we incorporate more of the steps into an end-to-end learn-
ing framework. Nevertheless, current state-of-the-art CNN structures still have
difficulty in capturing motion information directly from video frames. Instead,
traditional local optical flow estimation methods are used to pre-compute motion
information for the CNNs [19]. This two-stage pipeline, first compute optical flow
and then learn the mapping from optical flow to action labels, is sub-optimal for
the following reasons:

– The pre-computation of optical flow is time consuming and storage demand-
ing compared to the CNN step.
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Fig. 1: Illustration of proposed hidden two-stream networks. MotionNet takes
consecutive video frames as input and estimates motion. Then the temporal
stream CNN learns to project the motion information to action labels. Late
fusion is performed through the weighted averaging of the prediction scores of
the temporal and spatial streams. Both streams are end-to-end trainable.

– Traditional optical flow estimation is completely independent of the final
tasks like action recognition and is therefore potentially sub-optimal.

To solve the above problems, researchers have proposed various methods
other than optical flow to capture motion information in videos. For example,
new representations like motion vectors [27,33] and RGB image difference [25] or
architectures like recurrent neural networks (RNN) [16] and 3D CNNs [17,21,22,
28]. However, most of these are not as effective as optical flow for human action
recognition3. Therefore, in this paper, we aim to address the above mentioned
problems in a more direct way. We adopt the end-to-end CNN approach to learn
optical flow so that we can avoid costly computation and storage and obtain
task-specific motion representations. However, we face many challenges to learn
such a motion estimation model:

– We need to train the models without supervision. The ground truth flow
required for supervised training is usually not available except for limited
synthetic data [34,36,37].

– We need to train our optical flow estimation models from scratch. The mod-
els (filters) learned for optical flow estimation tasks are very different from
models (filters) learned for other vision tasks [6, 14,29].

– We cannot simply use the traditional optical flow estimation loss functions.
We are concerned chiefly with how to learn an optimal motion representation
for video action recognition.

To address these challenges, we first train a CNN with the goal of generating
optical flow from a set of consecutive frames. Through a set of specially designed
operators and unsupervised loss functions, our new training step can generate

3 Detailed comparisons can be found in the supplementary material.
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optical flow that is similar to that generated by one of the best traditional
methods [32]. As illustrated in the bottom of Figure 1, we call this network
MotionNet. Given the MotionNet, we concatenate it with a temporal stream
CNN that maps the estimated optical flow to the target action labels. We then
fine-tune this stacked temporal stream CNN in an end-to-end manner with the
goal of predicting action classes for the input frames. We call our new approach
hidden two-stream networks as it implicitly generates motion information for
action recognition. Our contributions include:

– Our method is both computationally and storage efficient. It is around 10x
faster than its two-stage baseline, and we do not need to store the pre-
computed optical flow.

– Our method outperforms previous real-time approaches on four challenging
action recognition datasets by a large margin.

– The proposed MotionNet is flexible in that it can be directly concatenated
with other video action recognition frameworks [1,16,22,35] to improve their
efficiency.

– We demonstrate the generalizability of our end-to-end learned optical flow
by showing promising results on four optical flow benchmarks without fine-
tuning.

2 Related Work

Significant advances in understanding human activities in video have been made
over the past few years. Initially, traditional handcrafted features such as Im-
proved Dense Trajectories (IDT) [23] dominated the field of video analysis for
several years. Despite their superior performance, IDT and its improvements
are computationally formidable for real applications. CNNs [11, 21], which are
often several orders of magnitude faster than IDTs, performed much worse than
IDTs in the beginning. This inferior performance is mostly because CNNs have
difficulty in capturing motion information among frames. Later on, two-stream
CNNs [19] addressed this problem by pre-computing the optical flow using tra-
ditional optical flow estimation methods [32] and training a separate CNN to
encode the pre-computed optical flow. This additional stream (a.k.a., the tem-
poral stream) significantly improved the accuracy of CNNs and finally allowed
them to outperform IDTs on several benchmarks. These accuracy improvements
indicate the importance of temporal motion information for action recognition
as well as the inability of existing CNNs to capture such information.

However, compared to the CNN, the optical flow calculation is computa-
tionally expensive. It is the major speed bottleneck of the current two-stream
approaches. As an alternative, Zhang et al. [33] proposed to use motion vectors
to replace the more precise optical flow. This simple improvement brought more
than 20x speedup compared to the traditional two-stream approaches. However,
this speed improvement came with an equally significant accuracy drop. The
encoded motion vectors lack fine structures, and contain noisy and inaccurate
motion patterns, leading to much worse accuracy compared to the more precise
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optical flow [32]. These weaknesses are fundamental and can not be improved.
Another more promising approach is to learn to predict optical flow using su-
pervised CNNs, which is closer to our approach. Ng. et al. [15] used optical flow
calculated by traditional methods as supervision to train a network to predict
optical flow. This method avoids the pre-computation of optical flow at inference
time and greatly speeds up the process. However, the quality of the optical flow
calculated by this approach is limited by the quality of the traditional flow es-
timation, which again limits its potential on action recognition. Ilg et al. [8] use
a network trained on synthetic data where ground truth flow exists. The ability
of synthetic data to represent the complexity of real data is very limited. Ilg et
al. [8] actually show that there is a domain gap between real data and synthetic
data. To address this gap, they simply grow the synthetic data to narrow the
gap. The problem with this solution is that it may not work for other datasets
and it is not feasible to do this for all datasets. Our work addresses the optical
flow estimation problem in a much more fundamental and promising way. We
predict optical flow on-the-fly using CNNs, thus addressing the computation and
storage problems. And we perform unsupervised pre-training on real data, thus
addressing the domain gap problem.

Besides the computational problem, traditional optical flow estimation is
completely independent of the high-level final tasks like action recognition and
is therefore potentially sub-optimal. However, our approach is end-to-end op-
timized. It is important to distinguish between these two ways of introducing
motion information to the encoding CNNs. Although optical flow is currently
being used to represent the motion information in the videos, we do not know
whether it is an optimal representation. There might be an underlying motion
representation that is better than optical flow. In fact, a recent work [30] demon-
strated that fixed flow estimation is not as good as task-oriented flow for general
computer vision tasks. Hence, we believe that our end-to-end learning frame-
work will help us extract better motion representations than traditional optical
flow for action recognition. However, for notational convenience, we still refer
our learned motion representation as optical flow.

3 Hidden Two-Stream Networks

In this section, we describe our proposed hidden two-stream networks in detail.
We first introduce our unsupervised network for optical flow estimation along
with employed good practices in Section 3.1. We name it MotionNet. In Section
3.2, we stack the temporal stream network upon MotionNet to allow end-to-end
training. Finally, we introduce the hidden two-stream CNNs in Section 3.3 which
combines our stacked temporal stream with a spatial stream.

3.1 Unsupervised Optical Flow Learning

We treat optical flow estimation as an image reconstruction problem [31]. Given
a frame pair, we hope to generate the optical flow that allows us to reconstruct
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one frame from the other. Formally, taking a pair of adjacent frames I1 and
I2 as input, our CNN generates a flow field V . Then using the predicted flow
field V and I2, we get the reconstructed frame I ′1 using backward warping, i.e.,
I ′1 = T [I2, V ], where T is the inverse warping function. Our goal is to minimize
the photometric error between I1 and I ′1. The intuition is that if the estimated
flow and the next frame can be used to reconstruct the current frame, then the
network should have learned useful representations of the underlying motions.

MotionNet Our MotionNet is a fully convolutional network, consisting of a
contracting part and an expanding part. The contracting part is a stack of con-
volutional layers and the expanding part is a chain of combined convolutional
and deconvolutional layers. The details of our network can be seen in the sup-
plementary material. We describe the challenges and proposed good practices to
learn better motion representation for action recognition below.

First, we design a network that focuses on small displacement motion. For real
data such as YouTube videos, we often encounter the problem that foreground
motion (human actions of interest) is small, but the background motion (camera
motion) is dominant. Thus, we adopt 3 × 3 kernels throughout the network to
detect local, small motions. Besides, we keep the high frequency image details
for later stages. Our first two convolutional layers do not use striding. We use
strided convolution instead of pooling for image downsampling because pooling
is shown to be harmful for dense per-pixel prediction tasks.

Second, our MotionNet computes multiple losses at multiple scales. Due to
the skip connections between the contracting and expanding parts, the interme-
diate losses can regularize each other and guide earlier layers to converge faster
to the final objective. We explore three loss functions that help us to generate
better optical flow. These loss functions are as follows.

– A standard pixelwise reconstruction error function, which is calculated as:

Lpixel =
1

hw

h∑
i

w∑
j

ρ(I1(i, j)− I2(i+ V xi,j , j + V yi,j)). (1)

The V x and V y are the estimated optical flow in the horizontal and vertical
directions. The inverse warping T is performed using a spatial transformer
module [9]. Here we use a robust convex error function, the generalized
Charbonnier penalty ρ(x) = (x2 + ε2)α, to reduce the influence of outliers.
h and w denote the height and width of images I1 and I2.

– A smoothness loss that addresses the aperture problem that causes ambiguity
in estimating motions in non-textured regions. It is calculated as:

Lsmooth = ρ(∇V xx ) + ρ(∇V xy ) + ρ(∇V yx ) + ρ(∇V yy ). (2)

∇V xx and ∇V xy are the gradients of the estimated flow field V x in each
direction. Similarly, ∇V yx and ∇V yy are the gradients of V y. The generalized
Charbonnier penalty ρ(x) is the same as in the pixelwise loss.
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– A structural similarity (SSIM) loss function [26] that helps us to learn the
structure of the frames. SSIM is a perceptual quality measure. Given two
K ×K image patches Ip1 and Ip2, it is calculated as

SSIM(Ip1, Ip2) =
(2µp1µp2 + c1)(2σp1p2 + c2)

(µ2
p1 + µ2

p2 + c1)(σ2
p1 + σ2

p2 + c2)
. (3)

Here, µp1 and µp2 are the mean of image patches Ip1 and Ip2, σp1 and σp2
are the variance of image patches Ip1 and Ip2, and σp1p2 is the covariance
of these two image patches. c1 and c2 are two constants to stabilize division
by a small denominator. In our experiments, K is set to 8 and c1 and c2 are
0.0001 and 0.001, respectively.
In order to compare the similarity between two images I1 and I ′1, we adopt
a sliding window approach to partition the images into local patches. The
stride for the sliding window is set to 8 in both the horizontal and vertical
directions. Hence, our SSIM loss function is defined as:

Lssim =
1

N

N∑
n

(1− SSIM(I1n, I
′
1n)). (4)

where N is the number of patches we can extract from an image given the
sliding stride of 8, n is the patch index. I1n and I ′1n are two corresponding
patches from original image I1 and the reconstructed image I ′1. Our exper-
iments show that this simple strategy significantly improves the quality of
our estimated flows. It forces our MotionNet to produce flow fields with clear
motion boundaries.

Hence, the loss at each scale s is a weighted sum of the pixelwise reconstruc-
tion loss, the piecewise smoothness loss, and the region-based SSIM loss,

Ls = λ1 · Lpixel + λ2 · Lsmooth + λ3 · Lssim (5)

where λ1, λ2, and λ3 weight the relative importance of the different metrics
during training. Since we have predictions at five scales (flow2 to flow6) due to
five expansions in the decoder, the overall loss of MotionNet is a weighted sum
of loss Ls:

Lall =

5∑
s=1

δsLs (6)

where the δs are set to balance the losses at each scale and are numerically of
the same order. We describe how we determine the values of these weights in
the supplementary materials.

Third, unsupervised learning of optical flow introduces artifacts in homo-
geneous regions because the brightness assumption is violated. We insert ad-
ditional convolutional layers between deconvolutional layers in the expanding
part to yield smoother motion estimation. We also explored other techniques in
the literature, like adding flow confidence and multiplying by the original color
images [8] during expanding. However, we did not observe any improvements.
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In Section 5.1, we conduct an ablation study to demonstrate the contribu-
tions of each of these strategies. Though our network structure is similar to a
concurrent work [8], MotionNet is fundamentally different from FlowNet2. First,
we perform unsupervised learning while [8] performs supervised learning for op-
tical flow prediction. Unsupervised learning allows us to avoid the domain gap
between synthetic data and real data. Unsupervised learning also allows us to
train the model for target tasks like action recognition in an end-to-end fashion
even if the datasets of target applications do not have ground truth optical flow.
Second, our network architecture is carefully designed to balance efficiency and
accuracy. For example, MotionNet only has one network, while FlowNet2 has 5
similar sub-networks. The model footprints of MotionNet and FlowNet2 [8] are
170M and 654M, and the prediction speeds are 370fps and 25fps, respectively.
We also present an architecture search in the supplementary materials to obtain
deep insights in terms of the model trade-off between accuracy and efficiency.

3.2 Projecting Motion Features to Actions

Given that MotionNet and the temporal stream are both CNNs, we would like
to combine these two modules into one stage and perform end-to-end training.
There are multiple ways to design such a combination to project motion features
to action labels. Here, we explore two ways, stacking and branching.

Stacking is the most straightforward approach and just places MotionNet
in front of the temporal stream, treating MotionNet as an off-the-shelf flow es-
timator. Branching is more elegant in terms of architecture design. It uses a
single network for both motion feature extraction and action classification. The
convolutional features are shared between the two tasks. Due to space limita-
tions, we show in the supplementary materials that stacking is more effective
than branching. It achieves better action recognition performance while remain-
ing complementary to the spatial stream. From now on, we choose stacking to
project the motion features to action labels.

For stacking, we first need to normalize the estimated flows before feeding
them to the encoding CNN. More specifically, as suggested in [19], we first clip
the motions that are larger than 20 pixels to 20 pixels. Then we normalize and
quantize the clipped flows to have a range between 0 ∼ 255. We find such a
normalization is important for good temporal stream performance and design a
new normalization layer for it.

Second, we need to determine how to fine tune the network, including which
loss to use during the fine tuning. We explored different settings. (a) Fixing
MotionNet, which means that we do not use the action loss to fine-tune the
optical flow estimator. (b) Both MotionNet and the temporal stream CNN are
fine-tuned, but only the action categorical loss function is computed. No unsu-
pervised objective (5) is involved. (c) Both MotionNet and the temporal stream
CNN are fine-tuned, and all the loss functions are computed. Since motion is
largely related to action, we hope to learn better motion estimators by this
multi-task way of learning. As will be demonstrated later in Section 4.2, model
(c) achieves the best action recognition performance.
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Third, we need to capture relatively long-term motion dependencies. We
accomplish this by inputting a stack of multiple consecutive flow fields. Simonyan
and Zisserman [19] found that a stack of 10 flow fields achieves a much higher
accuracy than only using a single flow field. To make fair comparison, we also fix
the length of our input to be 11 frames to allow us to generate 10 optical flows.

3.3 Hidden Two-Stream Networks

We also show the results of combining our stacked temporal stream with a spatial
stream. These results are important as they are strong indicators of whether our
stacked temporal stream indeed learns complementary motion information or
just appearance information.

Following the testing scheme of [19,24], we evenly sample 25 frames/clips for
each video. For each frame/clip, we perform 10x data augmentation by cropping
the 4 corners and 1 center, flipping them horizontally and averaging the predic-
tion scores (before softmax operation) over all crops of the samples. In the end,
we fuse the two streams’ scores with a spatial to temporal stream ratio of 1:1.5.

4 Experiments

4.1 Evaluation Datasets

We perform experiments on four widely used action recognition benchmarks,
UCF101 [20], HMDB51 [12], THUMOS14 [5] and ActivityNet [7]. UCF101 is
composed of realistic action videos from YouTube. It contains 13, 320 video clips
distributed among 101 action classes. HMDB51 includes 6, 766 video clips of 51
actions extracted from a wide range of sources, such as online videos and movies.
Both UCF101 and HMDB51 have a standard three-split evaluation protocol and
we report the average recognition accuracies over the three splits. THUMOS14
and ActivityNet are large-scale video datasets for action recognition and detec-
tion, which contain long untrimmed videos. THUMOS14 has 101 action classes.
It includes a training set, validation set, test set and background set. We don’t
use the background set in our experiments. We use 13,320 training and 1,010
validation videos for training and report the performance on 1,574 test videos.
For ActivityNet, we use its 1.2 version which has 100 action classes. Following
the standard evaluation split, 4,819 training and 2,383 validation videos are used
for training and 2,480 videos for testing.

4.2 Results

In this section, we evaluate our proposed framework on the first split of UCF101.
We report the accuracy as well as the processing speed of the inference step in
frames per second. The results are shown in Table 1. The implementation details
are in the supplementary materials.
Top section of Table 1: Here we compare the performance of two-stage ap-
proaches. By two-stage, we mean optical flow is pre-computed, cached, and then
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Table 1: Comparison of accuracy and efficiency. Top section: Two-stage temporal
stream approaches. Middle Section: End-to-end temporal stream approaches.
Bottom Section: Two-stream approaches.

Method Accuracy (%) fps

TV-L1 [32] 85.65 14.75
FlowNet [4] 55.27 52.08
FlowNet2 [8] 79.64 8.05
NextFlow [18] 72.2 42.02

Enhanced Motion Vectors [33] 79.3 390.7
MotionNet (2 frames) 84.09 48.54

ActionFlowNet (2 frames) [15] 70.0 200.0
ActionFlowNet (16 frames) [15] 83.9 −

Stacked Temporal Stream CNN (a) 83.76 169.49
Stacked Temporal Stream CNN (b) 84.04 169.49
Stacked Temporal Stream CNN (c) 84.88 169.49

Two-Stream CNNs [19] 88.0 14.3
Very Deep Two-Stream CNNs [24] 90.9 12.8

Hidden Two-Stream CNNs (a) 87.50 120.48
Hidden Two-Stream CNNs (b) 87.99 120.48
Hidden Two-Stream CNNs (c) 89.82 120.48

fed to a CNN classifier to project flow to action labels. For fair comparison, our
MotionNet here is pre-trained on UCF101, but not fine-tuned using the action
classification loss. It only takes frame pairs as input and outputs one flow es-
timate. The results show that our MotionNet achieves a good balance between
accuracy and speed in this setting.

In terms of accuracy, our unsupervised MotionNet is competitive to TV-L1
while performing much better (4% ∼ 12% absolute improvement) than other
methods of generating flows, including supervised training using synthetic data
(FlowNet [4] and FlowNet2 [8]), and directly getting flows from compressed
videos (Enhanced Motion Vectors [33]). These improvements are very significant
in datasets like UCF101. In terms of speed, we are also among the best of the
CNN based methods and much faster than TV-L1, which is one of the fastest
traditional methods.
Middle section of Table 1: Here we examine the performance of end-to-
end CNN based approaches. None of these approaches store intermediate flow
information and thus run much faster than the two-stage approaches. If we
compare the average running time of these approaches to the two-stage ones, we
can see that the time spent on writing and reading intermediate results is almost
3x as much as the time spent on all other steps. Therefore, from an efficiency
perspective, it is important to do end-to-end training and predict optical flow
on-the-fly.

ActionFlowNet [15] is what we denote as a branched temporal stream. It is a
multi-task learning model to jointly estimate optical flow and recognize actions.



10 Y. Zhu et al.

The convolutional features are shared which leads to faster speeds. However,
even the 16 frames ActionFlowNet performs 1% worse than our stacked temporal
stream. Besides, ActionFlowNet uses optical flow from traditional methods as
labels to perform supervised training. This indicates that during the training
phase, it still needs to cache flow estimates which is computation and storage
demanding for large-scale video datasets. Also the algorithm will mimic the
failure cases of the classical approaches.

If we compare the way we fine-tune our stacked temporal stream CNNs, we
can see that model (c) where we include all the loss functions to do end-to-end
training, is better than the other models including fixing MotionNet weights
(model (a)) and only using the action classification loss function (model (b)).
These results show that both end-to-end fine-tuning and fine-tuning with unsu-
pervised loss functions are important for stacked temporal stream CNN training.
Bottom section of Table 1: Here we compare the performance of two-stream
networks by fusing the prediction scores from the temporal stream CNN with the
prediction scores from the spatial stream CNN. These comparisons are mainly
used to show that stacked temporal stream CNNs indeed learn motion informa-
tion that is complementary to what is learned in appearance streams.

The accuracy of the single stream spatial CNN is 80.97%. We observe from
Table 1 that significant improvements are achieved by fusing a stacked temporal
stream CNN with a spatial stream CNN to create a hidden two-stream CNN.
These results show that our stacked temporal stream CNN is able to learn motion
information directly from the frames and achieves much better accuracy than
spatial stream CNN alone. This observation is true even in the case where we only
use the action loss for fine-tuning the whole network (model (b)). This result is
significant because it indicates that our unsupervised pre-training indeed finds
a better path for CNNs to learn to recognize actions and this path will not
be forgotten in the fine-tuning process. If we compare the hidden two-stream
CNNs to the stacked temporal stream CNNs, we can see that the gap between
model (c) and model (a)/(b) widens. The reason may be because, without the
regularization of the unsupervised loss, the networks start to learn appearance
information. Hence they become less complementary to the spatial CNNs.

Finally, we can see that our models achieve very similar accuracy to the
original two-stream CNNs. Among the two representative works we show, Two-
Stream CNNs [19] is the earliest two-stream work and Very Deep Two-Stream
CNNs [24] is the one we improve upon. Therefore, Very Deep Two-Stream CNNs
[24] is the most comparable work. We can see that our approach is about 1%
worse than Very Deep Two-Stream CNNs [24] in terms of accuracy but about
10x faster in terms of speed.

5 Discussion

5.1 Ablation Studies for MotionNet

Because of our specially designed loss functions and operators, our proposed Mo-
tionNet can produce high quality motion estimates, which allows us to achieve
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Table 2: Ablation study of good practices employed in MotionNet.
Method Small Disp SSIM CDC Smoothness MultiScale Accuracy (%)

MotionNet × × × × × 77.79
MotionNet X X X X × 80.63
MotionNet X X X × X 80.14
MotionNet X X × X X 81.25
MotionNet X × X X X 81.58
MotionNet × X X X X 82.22
MotionNet X X X X X 82.71

promising action recognition accuracy. Here, we run an ablation study to under-
stand the contributions of these components. The results are shown in Table 2.
Small Disp indicates using a network that focuses on small displacements. CDC
means adding an extra convolution between deconvolutions in the expanding
part of MotionNet. MultiScale indicates computing losses at multiple scales.

First, we examine the importance of using a network structure that focuses
on small displacement motions. We keep the other aspects of the implementation
the same, but use a larger kernel size and stride in the beginning of the network.
The accuracy drops from 82.71% to 82.22%. This drop shows that using smaller
kernels with a deeper network indeed helps to detect small motions.

Second, we examine the importance of adding the SSIM loss. Without SSIM,
the action recognition accuracy drops to 81.58%. This more than 1% performance
drop shows that it is important to focus on discovering the structure of frame
pairs.

Third, we examine the effect of removing convolutions between the deconvo-
lutions in the expanding part of MotionNet. This strategy is designed to smooth
the motion estimation. As can be seen in Table 2, removing extra convolutions
brings a significant performance drop from 82.71% to 81.25%.

Fourth, we examine the advantage of incorporating the smoothness objec-
tive. Without the smoothness loss, we obtain a much worse result of 80.14%.
This result shows that our real-world data is very noisy. Adding smoothness
regularization helps to generate smoother flow fields by suppressing noise. This
suppression is important for the following temporal stream CNNs to learn better
motion representations for action recognition.

Fifth, we examine the necessity of computing losses at multiple scales during
deconvolution. Without the multi-scale scheme, the action recognition accuracy
drops to 80.63%. The performance drop shows that it is important to regularize
the output at each scale in order to produce the best flow estimation in the end.
Otherwise, we found that the intermediate representations during deconvolution
may drift to fit the action recognition task, and not predict optical flow.

Finally, we explore a model that does not employ any of these practices.
As expected, the performance is the worst, which is 4.94% lower than our full
MotionNet.
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Table 3: Evaluation of optical flow and action classification. For flow evaluation,
lower error is better. For action recognition, higher accuracy is better.

Method Sintel KITTI2012 KITTI2015 Middlebury UCF101

FlowNet2 6.02 1.8 11.48 0.52 81.97
TV-L1 10.46 14.6 47.64 0.45 85.65

MotionNet 11.93 7.5 30.65 0.91 84.88

5.2 Learned Optical Flow

In this section, we systematically investigate the effects of different motion es-
timation models for action recognition, as well as their flow estimation quality.
We also show some visual examples to discover possible directions for future
improvement. Here, we compare three optical flow models: TV-L1, MotionNet
and FlowNet2. To quantitatively evaluate the quality of learned flow, we test
the three models on four well received benchmarks, MPI-Sintel, KITTI 2012,
KITTI 2015 and Middlebury. For action recognition accuracy, we report their
performance on UCF101 split1. The results can be seen in Table 3. We use EPE
(endpoint error) to evaluate MPI-Sintel, KITTI 2012 and Middlebury with lower
being better. We use Fl (percentage of optical flow outliers) to evaulate KITTI
2015 with lower being better. We use classification accuracy to evaluate UCF101
with higher being better.

For flow quality, FlowNet2 generally performs better, except on Middlebury
because it mostly contains small displacements. Our MotionNet has similar per-
formance to TV-L1 on Sintel and Middlebury, and outperforms TV-L1 on KITTI
2012 and KITTI 2015. The result is encouraging because the KITTI benchmark
contains real data (not synthetic), which indicates that the flow estimation from
our MotionNet is robust and generalizable. In addition, although FlowNet2 ranks
higher on optical flow benchmarks, it performs the worst on action recognition
tasks. This interesting observation means that lower EPE does not always lead
to higher action recognition accuracy. This is because EPE is a very simple met-
ric based on L2 distance, which does not consider motion boundary preservation
or background motion removal. This is crucial, however, for recognizing complex
human actions.

We also show some visual samples in Figure 2 to help understand the effect
of the quality of estimated flow fields for action recognition. The color scheme
follows the standard flow field color coding in [8]. In general, the estimated flow
fields from all three models look reasonable. MotionNet has lots of background
noise compared to TV-L1 due to its global learning. This maybe the reason why
it performs worse than TV-L1 for action recognition. FlowNet2 has very crisp
motion boundaries, fine structures and smoothness in homogeneous regions. It
is indeed a good flow estimator in terms of both EPE and visual inspection.
However, it achieves much worse results for action recognition, 3.5% lower than
TV-L1 and 2.9% lower than our MotionNet. Thus, which motion representation
is best for action recognition remains an open question.
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Image	Overlay TVL1 MotionNet FlowNet2 Image	Overlay TVL1 MotionNet FlowNet2

Fig. 2: Visual comparisons of estimated flow field from TV-L1, MotionNet and
FlowNet2. Left: ApplyEyeMakeup, BabyCrawling, BodyWeightSquats, Boxing-
PunchingBag and CleanAndJerk. Right: Hammering, PlayingFlute, Pommel-
Horse, WallPushups and YoYo. This figure is best viewed in color.

6 Comparison to State-of-the-Art Real-Time Approaches

In this section, we compare our proposed method to recent real-time state-of-the-
art approaches as shown in Table 44. Among all real-time methods, our hidden
two-stream networks achieves the highest accuracy on the four benchmarks.
We also show the flexibility of our MotionNet by concatenating it to temporal
streams with different backbone CNN architectures, e.g., VGG16 [24], TSN [25]
and I3D [1]. With deeper networks, we can achieve higher recognition accuracy
and still be real-time. We are 6.1% better on UCF101, 14.2% better on HMDB51,
8.5% better on THUMOS14 and 7.8% better on ActivityNet than the previous
state-of-the-art. This indicates that our stacked end-to-end learning framework
can implicitly learn better motion representations than motion vectors [10, 33]
and RGB differences [25] with respect to the task of action recognition.

7 Conclusion

We have proposed a new framework called hidden two-stream networks to recog-
nize human actions in video. It addresses the problem of capturing the temporal
relationships among video frames which the current CNN architectures have
difficulty with. Different from the current common practice of using traditional

4 In general, the requirement for real-time processing is 25 fps. We also compare to
other non real-time approaches in the supplementary materials.
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Table 4: Comparison to state-of-the-art real-time approaches on four bench-
marks with respect to mean classification accuracy. ∗ indicates results from our
implementation.

Method UCF101(%) HMDB51(%) THUMOS14(%) ActivityNet(%)

MV + FV [10] 78.5 46.7 − −
EMV [33] 80.2 − 41.6 −

C3D (1 Net) [21] 82.3 49.7∗ 54.6 74.1
ActionFlowNet [15] 83.9 56.4 51.3∗ 68.8∗

RGB + EMV [33] 86.4 − 61.5 −
3DNet [2] 90.2 − − −

RGB Diff (TSN) [25] 91.0 64.5∗ 71.9∗ 83.0∗

Ours (VGG16) 90.3 60.5 66.7 77.8
Ours (TSN) 93.2 66.8 74.5 87.9
Ours (I3D) 97.1 78.7 80.6 91.2

local optical flow estimation methods to pre-compute the motion information for
CNNs, we use an unsupervised pre-training approach. Our MotionNet is com-
putationally efficient and end-to-end trainable. It is flexible and can be directly
applied in other frameworks for various video understanding applications. Ex-
perimental results on four challenging benchmarks demonstrate the effectiveness
of our approach.

In the future, we would like to improve our hidden two-stream networks in the
following directions. First, we would like to improve our optical flow prediction
based on the observation that the smoothness loss has significant impact on the
quality of the motion estimations for action recognition. Second, we would like
to incorporate other best practices that improve the overall performance of the
networks. For example, joint training of the two streams instead of a simple
late fusion. Third, it would be interesting to see how addressing the false label
assignment problem can help improve our overall performance. Finally, removing
global camera motion and partial occlusion within the CNN framework would
be helpful for both optical flow estimation and action recognition.
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