Skip to main content

Deep Multi-instance Volumetric Image Classification with Extreme Value Distributions

  • Conference paper
  • First Online:
  • 3238 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Abstract

Predicting the presence of a disease in volumetric images is an essential task in medical imaging. The use of state-of-the-art techniques like deep convolutional neural networks (CNN) for such tasks is challenging due to limited supervised training data and high memory usage. This paper presents a weakly supervised solution that can be used in learning deep CNN features for volumetric image classification. In the proposed method, we use extreme value theory to model the feature distribution of the images without a pathology and use it to identify positive instances in an image that contains pathology. The experimental results show that the proposed method can learn classifiers that have similar performance to a fully supervised method and have significantly better performance in comparison with methods that use fixed number of instances from a positive image.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Retinal oct fluid challenge. https://retouch.grand-challenge.org/home/

  2. Solution of grt123 team. https://github.com/lfz/DSB2017/blob/master/solution-grt123-team.pdf

  3. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 577–584 (2003)

    Google Scholar 

  4. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1563–1572 (2016)

    Google Scholar 

  5. Berman, S.M.: Limiting distribution of the maximum term in sequences of dependent random variables. Ann. Math. Stat. 33(3), 894–908 (1962)

    Article  MathSciNet  Google Scholar 

  6. Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data 99, 1–1 (2017)

    Google Scholar 

  7. Cheplygina, V., Sørensen, L., Tax, D.M., Pedersen, J.H., Loog, M., de Bruijne, M.: Classification of COPD with multiple instance learning. In: 22nd International Conference on Pattern Recognition (ICPR), pp. 1508–1513. IEEE (2014)

    Google Scholar 

  8. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, vol. 208. Springer, Heidelberg (2001). https://doi.org/10.1007/978-1-4471-3675-0

    Book  MATH  Google Scholar 

  9. Dou, Q., et al.: Automatic detection of cerebral microbleeds from mr images via 3D convolutional neural networks. IEEE Trans. Med. Imaging (TMI) 35(5), 1182–1195 (2016)

    Article  Google Scholar 

  10. Ferreira, A., De Haan, L., et al.: On the block maxima method in extreme value theory: PWM estimators. Ann. Stat. 43(1), 276–298 (2015)

    Article  MathSciNet  Google Scholar 

  11. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2424–2433 (2016)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42(Suppl C), 60–88 (2017)

    Article  Google Scholar 

  14. Marmor, M.F.: Mechanisms of fluid accumulation in retinal edema. In: Wolfensberger, T.J. (ed.) Macular Edema, pp. 35–45. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-011-4152-9_4

    Chapter  Google Scholar 

  15. Quellec, G., Cazuguel, G., Cochener, B., Lamard, M.: Multiple-instance learning for medical image and video analysis. IEEE Rev. Biomed. Eng. 99, 1–1 (2017)

    MATH  Google Scholar 

  16. Scheirer, W.J., Rocha, A., Micheals, R.J., Boult, T.E.: Meta-recognition: the theory and practice of recognition score analysis. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 33(8), 1689–1695 (2011)

    Article  Google Scholar 

  17. Scheirer, W.J., Rocha, A., Sapkota, A., Boult, T.E.: Towards open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 35(7), 1757–1772 (2013)

    Article  Google Scholar 

  18. Setio, A.A.A., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging (TMI) 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  19. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging (TMI) 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  20. Sorensen, L., Nielsen, M., Lo, P., Ashraf, H., Pedersen, J.H., De Bruijne, M.: Texture-based analysis of COPD: a data-driven approach. IEEE Trans. Med. imaging (TMI) 31(1), 70–78 (2012)

    Article  Google Scholar 

  21. Yan, Z., et al.: Multi-instance deep learning: discover discriminative local anatomies for body part recognition. IEEE Trans. Med. Imaging (TMI) 35(5), 1332–1343 (2016)

    Article  Google Scholar 

  22. Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_69

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruwan Tennakoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tennakoon, R., Gostar, A.K., Hoseinnezhad, R., de-Bruijne, M., Bab-Hadiashar, A. (2019). Deep Multi-instance Volumetric Image Classification with Extreme Value Distributions. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics