Skip to main content

Microscopic Sample Segmentation by Fully Convolutional Network for Parasite Detection

  • Conference paper
  • First Online:
Book cover Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

This paper describes a method of pixel-level segmentation applied to parasite detection. Parasite diseases in most cases are detected by microscopic samples examination or by ELISA blood tests. The microscopic methods are less invasive and often used in veterinary, but they need more time to prepare and visually evaluate samples. Diagnosticians search the entire sample to find parasite eggs and to classify their species. Depending on the species of the diagnosed animal, the samples can contain various types of pollution, e.g. fragments of plants. Most of the objects in the sample by their transparency look similar, and some of parasites eggs might be unintentionally omitted. The presented method based on fully convolutional network allows processing the entire space of the sample and assigning a class to each pixel of the image. Our model was trained to classify parasite eggs and distinguish them from adjacent or overlapped pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)

    Article  Google Scholar 

  2. de Souza, G.B., da Silva Santos, D.F., Pires, R.G., Marananil, A.N., Papa, J.P.: Deep features extraction for robust fingerprint spoofing attack detection. J. Artif. Intell. Soft Comput. Res. 9(1), 41–49 (2019)

    Article  Google Scholar 

  3. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  4. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  5. Kamimura, R.: Supposed maximum mutual information for improving generalization and interpretation of multi-layered neural networks. J. Artif. Intell. Soft Comput. Res. 9(2), 123–147 (2019)

    Article  Google Scholar 

  6. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. arXiv preprint arXiv:1801.00868 (2018)

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  8. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  10. Najgebauer, P., Rutkowski, L., Scherer, R.: Interest point localization based on edge detection according to gestalt laws. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 349–353, September 2017

    Google Scholar 

  11. Najgebauer, P., Rutkowski, L., Scherer, R.: Novel method for joining missing line fragments for medical image analysis. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 861–866, August 2017

    Google Scholar 

  12. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)

    Google Scholar 

  13. Notomista, G., Botsch, M.: A machine learning approach for the segmentation of driving maneuvers and its application in autonomous parking. J. Artif. Intell. Soft Comput. Res. 7(4), 243–255 (2017)

    Article  Google Scholar 

  14. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates. In: Advances in Neural Information Processing Systems, pp. 1990–1998 (2015)

    Google Scholar 

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  16. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

Download references

Acknowledgments

This work was supported by the Polish National Science Centre under grant no. 2017/27/B/ST6/02852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Najgebauer, P., Grycuk, R., Rutkowski, L., Scherer, R., Siwocha, A. (2019). Microscopic Sample Segmentation by Fully Convolutional Network for Parasite Detection. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics