Allowing Users to Create Similarity Relations
for Their Flexible Searches Over Databases

Mohammad Halim Deedar and Susana Munoz-Herndndez

Escuela Técnica Superior de Ingenieros Informéticos, Universidad Politécnica de
Madrid, Campus de Montegancedo s/n, Boadilla del Monte, 28660
halim.deedar@alumnos.upm.es, susana@fi.upm.es

Abstract. A bi-valued logic is not enough to make an intelligent search
engine to give us the result for the queries like "I am looking for a cheap
restaurant, Mediterranean food or similar type.” With the integration of
Fuzzy Logic and Logic Programming, we were able to model and pose
flexible queries over databases. Therefore, we present a framework that
allows users to pose their expressive queries based on defining similar
relation criteria over various modern and conventional data formats such
as JSON, SQL, CSV, XLS, and XLSX. The interest is in, for example,
obtaining ”drama movie” when asking for “romantic movie” (only if
the similarity relation between drama and romantic movie is explicitly
defined in the configuration file). The uses of similarity relation between
values allow us to obtain more answers apart from the identical one.
The searches that use two or more criteria are much more expressive
and accurate. This framework provides the facility to define, modify and
remove similarity relations from a user-friendly interface (without the
need to be concern about the low-level syntax of the similarity criteria).

Keywords: Fuzzy logic - Similarity relation - Expressive searches - Search
engine - framework.

1 Introduction

Assume a database storing information on films, containing entities such as film’s
name, genre, etc. A user wants to retrieve "a list of all the films existing in the
film database which are very similar to a drama film.” It is not functional to store
fuzzy information with those fuzzy concepts (very similar, completely similar,
cheap, far, etc.) in a database. However, it is not surprising that an end-user
being a human to have that type of queries, as they always think and query
in an expressive(fuzzy) way. Although searching in a fuzzy way not only gives
us the exact information we are looking for, but it lets us to retrieve all the
possible and available information close to the criteria which we have set for
our query. For example, if we do a normal query (non-fuzzy) using any other
standard query languages such as SQL to retrieve a movie from a film database
(having a crisp information) which is of genre romance, we get a list of all the
existing romance movies from the database but we may miss the ones who are

2 M.H. Deedar and S.Munoz Hernandez

not explicitly defined as a romance movie but they are quite similar to romantic
movie (because a drama movie sometime can be romantic too) and this could
be the movie that the user is looking for. Therefore, we aim to provide a flexible
database searching system that allows the user to pose their expressive queries
over various data formats and get the best possible results.

A similarity is a relation between two real-world concepts. For a human being,
it is not so difficult to decide how two things are similar or not to each other. In
order to represent the real-world concepts as the human being understands, we
need to introduce all the required information (or knowledge) explicitly. There-
fore, for representing the real-world concept to the machines, we need a logic
much more than a bi-valued logic (that defines if an individual belongs to a set
or not by using only two value which is ”true/false” or ”yes/no”).

Fuzzy logic [19,20] has substantiated its capability devoted to the manage-
ment of vague information in a different number of applications (such as control
systems, database or expert systems). The integration of Fuzzy Logic and pure
logic programming [9] provides Fuzzy Logic Programming with the capability of
dealing with ambiguity and approximate reasoning. This integration provided us
the facility to program the machines in order to understand the fuzzy character-
istics (it is cold), fuzzy rules (if it is cold, turn on the heater) and fuzzy actions
(since it is not too cold, turn on the heater at medium degree). Therefore, in our
approach the representation of similarity relation between two real-world con-
cepts is provided using the integration of Prolog which is more declarative and
a successful programming language for representing knowledge, and the Fuzzy
Logic that defines not only if an individual belongs to a set or not, but it also
provides us the degree of its belonging from that set. Supposing, a film database
and the definition for the criteria ”0ld” in (Fig. 1), and the question ”is film
X is old?” with fuzzy logic we can deduce that Casablanca is "very” old, The
Godfather is ”almost” old, Thor is "hardly” old, and Halloween is "not” old. We
highlight the words ”very,” ”almost,” ”hardly,” and "not” because the usual an-
swers for the query are 717, 70.9”, 70.1” and ”0” for the individuals Casablanca,
The Godfather, Thor, and Halloween.

1
N

film_name genre release_year N .
Casablanca Romance|1946 \\
The Godfather|Drama [1972 old N
Thor Action |2013 AN
Halloween Horror 2018 N \

0 N

1946 2018 released_year

Fig. 1. film database content and old fuzzification criterion.

Allowing Users to Create S.R for their Flexible Searches over DBs 3

Many tools have been developed and implemented based on the fuzzy set
theory introduced by Zadeh (as cited in [1]) to represent the fuzzy knowledge as
Prolog-Elf system by Ishizuka and Kanai[7], the FRIL Prolog system by Bald-
win et al.[1], the F-Prolog language by Li and Liu[8], the FuzzyDL reasoner
by by Bobillo and Straccia[2], the Fuzzy Logic Programming Environment for
Research (FLOPER) by Morcillo and Moreno[12], the Fuzzy Prolog system by
Guadarrama et al.[6], RFuzzy by Mufioz-Herndndez et al.[13], and the theoret-
ical frameworks as Vojtds[17]. But we have used RFuzzy with priorities[14, 15]
in our approach to add a link between fuzzy and non-fuzzy concept because we
need our approach to have the capability to decide the preferred results among
the ones provided by different rules, it does not matter if the last rule provides
a result with higher truth value.

We aim to present a framework intelligent and flexible enough that allows
users to perform fuzzy (expressive) queries over databases (having crisp data)
adding the similarity relation criteria. To our knowledge, the works similar to
ours are[18, 5, 3,4]. The main distinctive characteristics of our approach in com-
parison to other ones are (1) that we do not force our relations to be equivalence
(reflexive, symmetric, or transitive) for our similarity criteria.(2) We are not
trying to evaluate the closeness (or similarity) between two fuzzy propositions.
Our work is different: The item which is similar to the one we are looking for
is returned as a result after computing its similarity value. (3) There is no lim-
itation on posing the expressive query only over a single data format because
our framework allows the users to pose their expressive query over conventional
and modern data formats such as JSON, SQL, CSV, XLS, and XLSX. (4) We
allow the end-users to define, modify and remove similarity relations between
two concepts without knowing the low-level syntax of the function, which can
reduce the gap between the database end-users and the logic programming users.

This paper is structured as follows: A brief details about the general RFuzzy
rule syntax, the syntax for defining databases, and the introduction to the Sim-
ilarity syntax and semantics are given in (Section 2). In (Section 3) we present
the implementation of the framework (web application) including the details
about the system architecture and the steps for defining, querying, and modifi-
cation of Similarity relations, and the results of the query after posing it over the
database. Finally, in (Section 4) we give our conclusions and the current work.

2 Syntax and semantics of Similarity relation

Before discussing the syntax and semantics of similarity relations of our ap-
proach, we include a brief detail about the general RFuzzy rule syntax (Section
2.1) and the syntax for database definition (Section 2.2) because by some means
they are related to each other.

2.1 General RFuzzy rule syntax

The general structure that is used to define RFuzzy rules in according to a
multi-adjoint logic semantics is shown in Eq. 1[14]

4 M.H. Deedar and S.Munoz Hernandez

P’I‘j7vcj)&i
P(argsP;, V;) Ve @; (@1 (argsQuj, V15)), (1)
o (Qn (argsQnj, Vij).

Where P is the predicate, j is one of the definitions from a set of definitions
J € [1, N] (where N is number of rules that we have to define for predicate P,
and j identifies one of these rules). argsP; are the arguments of P in the rule
J, in the same way argsQ; are the arguments of @; where ¢ € [1,n] and n is
the number of elements of the body of the clause. V; is the truth value of the
Qi(argsQ;,V;). @Q; is the aggregation operator of the rule j. V.; is the credibility
to calculate the truth value and Pr; is the priority of j rule with respect to other
rules of P definition.

The multi-adjoint algebra as presented in[11, 10]is used to give semantics to
our framework. The purpose of using this structure is that it provides credibility
for the rules that we give in our program. We highlight this point, so the reader
knows why our approach is based on this structure and not some other. Since
comprehensive details about the semantics can be found in the papers cited.

2.2 Database definition syntax

The syntax which is responsible for outlining the contents of a database into
concepts that we can use in our searches is shown in Eq. 2 Where P is the name
of the database table, A is its arity, N is the name assigned to a column (field)
of the database table where values are of type T, i € [1, A] identifies each field
of the table. We give an example in Eq. 3, to elucidate, that the film table has
four columns, the first one is for the name assigned to each film, the second is for
the year in which the films have released, the third is for duration of the films
in minutes, and the last one is for the genre of each film whose value belongs to
an enumerate range (comedy, thriller, drama, romantic, adventures, etc.).

de fine_database(P/A,[(N;, T;)]). (2)

define_database (film/4,

[(film-name, string-type),

(release_year, integer_type), (3)
(duration_in_minutes, integer_type),

(genre, enum_type)]).

The web interface and setters/getters obtain plenty of information from the
database definition.

2.3 Similarity definition between values

The syntactical construction which is used for modeling a similarity relation be-
tween the values of a field is shown in Eq. 4. Where P and N are the same as
in Eq. 2, VI and V2 are the possible values for the column N of table P, and

Allowing Users to Create S.R for their Flexible Searches over DBs 5

TV is the truth value (a float number) that we assign to the similarity between
V1 and V2. To clarify, we give an example in Eq. 5, saying that "romance films
are 0.7 similar to drama films”.

similarity_between(P, N, [(V1),N(V2),TV]). (4)

similarity_between(film, genre(romance), (5)
genre(drama),0.7).

The semantic for defining conditioned similarity is shown in Eq. 6 where P, N,
TV, V1, and V2 are the same as in Eq. 4. p is the priority, v is the credibility,
&; is the product, and COND is a bi-valued condition. To clarify, we give an
example in Eq. 7, saying that the films with the genre drama are ”very similar”
to the films with the genre "romance” by 70.9” degree and with the credibility of
1 if the films are directed by Richard. This means, with the help of this structure
we can define the similarity relation between two values based on a condition
with the credibility of ”1”. For example, after posing a query for searching the
similarity degree between ”drama” and ”romance” films, we may obtain multiple
films of type "drama” and "romance” , but with the help of the syntax in (Eq.
7) with a condition and the credibility value a user can deduce that the films
which are directed by "Richard” (a film director) their similarity relation of
being ”"drama” and ”"romantic” are more credible in comparison to the rest of
the films.

N (P0)&i s (6)
similarity(P(N(V1,V2))) «—— TV if COND

similarity(film(genre(drama, romance)))

7O 7
L#r0d) g i director = Richard”. "

2.4 Synonyms definition

The syntactical constructions for defining synonyms based on the similarity rela-
tions between fuzzy predicates is shown in Eq. 8, where fPredName is the name
of the fuzzy predicate (expensive, cheap, etc.), P is the same as in Eq. 4, credOp
is the operator (product by default), and credVal is the credibility (a type float
number, which is 1 by default). To clarify, we give an example in Eq. 9, saying
that ”inexpensive is similar (or synonym) to cheap.”

fPredName(P) :~ (8)
synonym_of(fPredName2(P), credOp,credVal).

inexpensive(restaurant) :~)
synonym_of (cheap(restaurant), prod,1).

Attending to this definition, any query asking for inexpensive restaurants will
return the cheap ones.

6 M.H. Deedar and S.Munoz Hernandez

2.5 Similarity relation definition between concepts

With the syntax in Eq. 10, we can define a fuzzy predicate from another fuzzy
predicate by defining the similarity relation between both fuzzy concepts when
a condition is satisfied. We can define ”inexpensive” from ”cheap”, ”gorgeous”
from ”beautiful” etc. This will lead to getting a huge vocabulary for fuzzy search-
ing without defining or storing a definition for all new words which does not exist
in our vocabulary. In the syntax fPredName is the same as in Eq. 8, an individual
is an element of the database for which we want to obtain the fuzzy value, and
COND is the same as in Eq. 6. To clarify, we give an example in Eq. 11, where
we can get the answer for the query "I am looking for an inexpensive car” for
this query we will get the list of all the cars (stored in the database) which have
been defined as a cheap. COND equal to true means that the similarity relation
is always satisfied.

e 10
fPredName(individual) Lot fPredName2(individual) i f COND. (10)
inexpensive(individual) [LoDprod cheap(individual)i ftrue. (11)

3 Implementation details

Our proposed system is a combination of a web interface and a framework, de-
veloped mainly in Java, JavaScript, HTML, and AJAX. It uses RFuzzy package
which is a Prolog library developed for Ciao Prolog[16]. The web interface is
used to pose flexible queries over multiple conventional and modern data for-
mats ”JSON, SQL, CSV, XLS, and XLSX”. The framework part of our system
is used for defining the links between the crisp information stored in a database
and the fuzzy concepts that we can use in a query. As for as we know, our sys-
tem is novel in the idea of allowing the regular users (without having knowledge
about database and programming) to create a link between the crisp information
and the fuzzy concepts, and we allow them to define the similarity relation be-
tween concepts without knowing the low-level syntax of the criteria. Moreover,
we provide them the facility to perform their flexible query over multiple data
formats such as ”JSON, SQL, CSV, XLS, and XLSX” (they do not need to have
their database in a particular format such as ”Prolog” which is not so familiar
to the most regular users).

3.1 System architecture

The system architecture, which is shown in Fig. 2, has five main parts: (i) Crite-
ria Definition module: through which users can define, modify, personalize, and
remove the similarity relations. (ii) Flexible Query Engine: is the main part,
where users can pose their flexible queries devoted similarity relation. (iii) Flex-
ible query process module that takes the flexible queries as an input from the

Allowing Users to Create S.R for their Flexible Searches over DBs 7

users and provides the results as output after several computations of similarity
relations. (iv) An engine (ciao prolog) that compiles our query for allowing the
system to understand it and compute the corresponding similarity relations for
it. (v) A database (configuration file) where data, similarity relations, quantifiers,
modifiers, and negation operator are stored.

Database

Ciao

Criteria Prolog
Definition _//
module
lpm === === mms
Flexible Query Similarity o Similarity '
Process Relation «—> 'L _ _felations _:
module Query Data! —---------
' ! Qn;la;::f\ers '
Flexible Query h lodiriers
Search Engine 1SO Prolog : :TE_Q_&!_IO_I"I_OEE_T@_T.ET:

Fig. 2. System architecture

3.2 Data files uploading interface

We present the uploading interface in Fig. 3, in which we can see a list of data-
files of various formats. The framework allows users to define the types for the
existing data in the data-file. To clarify, we provide an example in Fig. 4, where
we assigned the data-types for each column of the film database. After assign-
ing the data-types, the interface will prepare the configuration file (Prolog file)
which stores the similarity relation for performing fuzzy and flexible searches.
We present the structure of the configuration file in (Example 3.1).

Ezapmle 3.1 We take an example of a film database that by the way was in SQL
format, which contains 6 columns and 16 records. After uploading it to the sys-
tem (Fig. 3) and assigning the data-types (Fig. 4), the database gets converted
into a configuration file (Prolog). The contents of the configuration file are as
follows:

% Configuration file (Prolog file):
:- module(car, _, [rfuzzy, clpr]).

% database definition define_database(film/6,
[(film_name, rfuzzy_string_type),
(release_year, rfuzzy_integer_type),
(duration_in_minutes,

rfuzzy _integer_type),

8 M.H. Deedar and S.Munoz Hernandez

(genre, rfuzzy_enum_type),

(original language, rfuzzy_enum_type),

(directed_by, rfuzzy_enum_type)]).

film('The Godfather’,1972, 207, drama, english, "Francis Ford Coppola’).
film(’Casablanca’, 1946, 172, romance, english, "Michael Curtiz’).

Im(’Cera una volta il West’;1968,165,western,italian,’Sergio Leone’).

Im("El laberinto del fauno’,2006,107,drama,spanish,’Guillermo del Toro’).

Im ("Il buono, il brutto, il cattivo’, 1967, 141,adventure,italian, ’Sergio Leone’).
Im(’Finding Nemo’, 2003, 112, comedy, english, ’Andrew Stanton and Lee Unkrich’).
Im("Thor - The dark world’, 2013, 90, action, english, ’Alan Taylor’).

Im("Blue Jasmine’, 2013, 98, action, english, "Woody Allen’).

Im(’The Collection’, 2013, 82, thriller, english, 'Marcus Dun-stan’).

Im(’Before Sunrise’, 1995, 101, romantic_drama, english, 'Rich-ard Linklater’).
film(’Before Midnight’, 2013, 109, romantic_drama, english, 'Richard Linklater’).
film(’Quien mato a Bambi?’, 2013, 89, comedy, spanish, 'Santi Amodeo’). film(’Not
Suitable for Children’, 2012, 96, romantic_comedy, english, "Peter Templeman’).
film(’Alien vs Predator’, 2004, 115, science_fiction, english, 'Paul W.S. Anderson’.
film("Despicable Me’, 2010, 95, comedy, english, "Pierre Coffin and Chris Renaud’).
film('Despicable Me 27, 2013, 98, comedy, english, "Pierre Coffin and Chris Renaud’).

PR =Dl Dl D = DR e p R Pl p}

UPLOAD YOUR DATA FILES

UPLOADED DATA FILES UVACITY REMOVE FILE

cars.xls | PUBLIC
film.sql ¥ PUBLIC
restaurant.json ~ PUBLIC
shopping.csv PRIVATE

students.xlsx PRIVATE

travels.pl ¥ PUBLIC

Fig. 3. Data files uploading interface

Allowing Users to Create S.R for their Flexible Searches over DBs 9

Select the types for the columns:

film_name = String ~ |release_year | Integer ~ | duration_in_minute | Integer v | genre | Enum v

ariginal_language | Enum ~ | directed_by Enum ~
CREATE TABLE restaurant (
film_name VARCHAR(30),
release_year VARCHAR(11),
duration_in_minute VARCHAR(11),
genre VARCHAR(11),
original_language VARCHAR(30) ,
directed_by VARCHAR(30);
INSERT INTO film VALUES('The_Godfather’, 1972, 207, 'drama’, 'english’, 'Francis_Ford_Coppola’);
INSERT INTO film VALUES('Casablanca’, 1946, 172, 'romance’, ‘english’, ‘Michael_Curtiz’);
INSERT INTO film VALUES('Cera_una_volta_il_West', 1968, 165, 'western’, ‘italian’, 'Sergio_Leone’);
INSERT INTO film VALUES('El laberinto del fauno’, 2006, 107, 'drama’, 'spanish’, 'Guillermo_del_Toro');
INSERT INTO film VALUES('Il_buono, il_brutto, il_cattivo', 1967, 141, 'adventure’, 'italian’, 'Sergio_Leone’);
INSERT INTO film VALUES('Finding Nemo', 2003, 112, ‘comedy’, 'english’, 'Andrew_Stanton_and_Lee_Unkrich);
INSERT INTO film VALUES('Thor_The_dark_world", 2013, 90, 'action’, 'english’, 'Alan_Taylor");
INSERT INTO film VALUES('Blue_Jasmine’, 2013, 98, 'action’, 'english’, "Woody_Allen’);
INSERT INTO film VALUES('The_Collection’, 2013, 82, 'thriller’, ‘english’, ‘Marcus_Dunstan');
INSERT INTO film VALUES('Before_Sunrise’, 1995, 101, ‘romantic_drama’, ‘english’, ‘Richard_Linklater'):
INSERT INTO film VALUES('Before_Midnight', 2013, 109, ‘romantic_drama’, 'english’, 'Richard_Linklater');
INSERT INTO film VALUES('Quien_mato_a_Bambi?', 2013, 89, 'comedy’, 'spanish’, 'Santi_Amodeo');
INSERT INTO film VALUES('Not_Suitable_for_Children’, 2012, 96, ‘romantic_comedy’, ‘english’, 'Peter_Templeman’);
INSERT INTO film VALUES('Despicable_Me’, 2010, 95, 'comedy’, 'english’, 'Pierre_Coffin_and_Chris_Renaud');
INSERT INTO film VALUES('Despicable_Me_2', 2013, 98, 'comedy’, 'english’, 'Pierre_Coffin_and_Chris_Renaud");

Fig. 4. assigning data-types for the columns

As we can see, the configuration file is made up of four different parts: (1) the
header ”:- module(film,_,[rfuzzy, clpr]).” that includes the packages and libraries of
RFuzzy and CLPR (Constraint Logic Programming) which helps us to introduce the
structure of fuzzy criteria to the search engine while posing an expressive query. (2)
is the definition of the database that defines the columns and their data-types, (3) is
a table storing the crisp data. (4) Is the part where the similarity relation defined by
users get stored.

3.3 Defining similarity relation interface

In order to perform a query based on the similarities, you need to have the criteria
already defined inside the configuration file. Since the low-level syntax for defining the
similarity criteria (as defined in Section 2) is not so easy for a user without having
knowledge of database or programming, therefore, we present a user-friendly interface
in Fig. 5 that allows end-users to create the similarity relation criteria (without being
concerned about the low-level syntax of the criteria), and then they can apply that
criteria over various types of modern and conventional data formats such as (JSON,
SQL, Prolog, CSV, XLS, and XLSX) for performing flexible queries. Once the data file
is uploaded to the system, with the help of ” Define new similarity relations” option the
user can create the criteria by assigning a degree of similarities between two values.
We have explained the steps for defining similarity relations in below.

The steps for creating a similarity relation are as follows:

10 M.H. Deedar and S.Munoz Hernandez

— 1. Selecting the database: As there can be more than one database in a configuration
file such as (film, restaurant, etc.) therefore, the interface asks the user to select
the one on which he/she wants to define the similarity relation criterion.

— ii. Selecting the column: In this step, the interface asks for the column on which
the users want to define the similarity relations. Such as (genre, etc.).

— iii. Selecting the values: after selecting the column, the interface asks for two val-
ues/items such as (romance, drama, action, comedy, horror, etc.) on which the
user want to assign the similarity degree.

— iv. Defining the similarity degree: Finally, the user has to a sign a similarity degree
(a real number between 0 and 1) to define whether the items are (completely dif-
ferent, quite different, very different, similar, very similar, and completely similar).
After clicking the save button, the criteria get created inside the configuration file.

Define new | Similarity relation ~

SELECT THE DATA FILE FOR DEFINING SIMILARITY: film ~

SELECT THE FIELD FOR DEFINING SIMILARITY: genre A

CHOOSE THE ITEMS FOR DEFINING THEIR

SIMILARITIES: drama X romance v
DEFINE THE DEGREE OF SIMILARITY BETWEEN THE) 1| [—m——
BOTH ITEMS:

Save modifications

Fig. 5. Defining similarity relation interface

Ezample 3.1 (Continued) Once the configuration file is generated for the film database,
now the user can create the similarity relations over the values of the film database.

For example, the user wants to define the similarity relations between ”drama” genre

and other genres such as (romance, action, comedy, horror, and adventure). Thus, the

similarity relations will get created as follows:

%Similarity relations defined over genres:
define_similarity_between(film, genre(drama), genre(adventure), 0.8).
define_similarity_between(film, genre(drama), genre(romance), 0.7).
define_similarity_between(film, genre(drama), genre(comedy), 0.5).
define_similarity_between(film, genre(drama), genre(horror), 0.3).

(() (

define_similarity_between(film, genre(drama), genre(action), 0).

We can see that the user has created five similarity relations between the genre
”drama” and ”romance, adventure, comedy, horror, and action”, and the user has
presented the similarity by assigning them different degree (between 0 and 1). We have
considered six different categories for the similarity degrees created in our framework
to make the end-users understand what we exactly mean by these real numbers (0 and
1) while defining the similarity relation. These categories are as follows:

Allowing Users to Create S.R for their Flexible Searches over DBs 11

— i. Completely different (Category 0): This category has the value 70”7, and the user
is going to assign it for the similarity relation between the values, that he/she
thinks they are ”completely different”.

— ii. Very different (Category 0.1 0.3): This category has the values between ”0.1”
and ”70.3”, the user will assign these degrees between the values that he/she thinks
they are ”very different”.

— iii. Quite different (Category 0.3 0.5): This category has the values between 0.3
and 0.5, the user assigns these degrees between the values that he/she thinks they
are ”quite different”.

— iv. Similar (Category 0.5): This category defines the relation between the values
that the user thinks they are ”similar” to each other.

— v. Very similar (Category 0.6 0.9): By assigning any degree of this category in a
similarity relation, the user means the two values are ”very similar” to each other.

— Completely similar (Category 1): This category has the value 717, and the user
assign it for the similarity relation between the values which are ”completely sim-
ilar”.

We present a graph in (Fig. 6) for the similarity relations that we have created in our
previous example:

Degree of
Similarity
A
Completely Similar =1
04

0.2

Very Similar 07
0.6

Similar - 0.5

Quite different - 0.4
0.3

Very different 0z

01

Completely different = 0 Genres

Drama
Adventure
Comedy
Horror
Action

Romance

Fig. 6. Similarity relation between drama and other genres.

12 M.H. Deedar and S.Munoz Hernandez

3.4 Query interface
In order to perform a query over a database we need to follow the following steps:

— i. In querying interface, we select the database (such as film, restaurant, etc.) on

which we want to pose the query as shown in Fig. 7.

— ii. After selecting the database, the framework will provide us a list of predicates
such as (genre, film_name, release_year, original language, etc.) and their values
such as (drama, horror, action, romance, comedy, etc.) as shown in Fig. 8, we need
to select the predicate with an enum_type and a corresponding value, and then we
define the modifier similar (= =) between them.

— iii. After defining all the criteria, we click the search button for executing our query.

Ezample 3.1 (Continued): After defining the similarity relations between ”drama”
and other genres (romance, action, comedy, horror, and adventure) of the film database,
now the user wants to query: ”I am looking for the film whose genre is similar to drama”
Or, "I am looking for the film whose genre is similar to romance, etc.” By posing these
queries, our system will provide us a list of all the films from different categories devoted
on the similarity degrees assigned for each relation (completely different, very different,
quite different, similar, very similar, and completely similar).

Your query: I'm looking for a W

restaurant

Fig. 7. Selecting the database.

genre v

Search

Fig. 8. Selecting the predicates and the modifiers.

3.5 Answering interface

The answering interface provides different sets of in different tabs (10 best results,
results in over 70%, results in over 50%, results in over 0 %, and all the results). These
tabs provide different choices to the users to select the one which satisfies his/her needs.

— The tab with 710 best results” provides us the 10 best items (or less, it depends
on the number of items existed in the database) which are similar to each other
with a highest degree of similarity.

Allowing Users to Create S.R for their Flexible Searches over DBs 13

The tab with the ”results over 70%” provides us with a greater number of options
with the similarity degrees between the range of (0.8 to 1). That means the user
can get the items from the categories (very similar, and completely similar).

The tab with the ”results over 50%” provides us the items with the similarity
degrees between the range of (0.6 to 1) that includes the items from the categories
(similar, very similar, and completely similar).

The tab with ”the results over 0%” includes the items from the categories (quite
different, very different, similar, very similar, and completely similar) with the
similarity degree between the range of (0.1 to 1) excluding ”0”.

And the tab with ”all results” provide us the items from all the categories with a
similarity degree from (0 to 1) including ”0”.

Ajax has been used for getting the result form each tab to avoid waste of computing
time.

Ezample 3.1 (Continued): After posing the query, "1 am looking for the film whose
genre is similar to drama.” The results provided by the system are as follows: The
system provided us with the top 8 best results out of 10 (after selecting the tab with
10 best results) as there is only eight films which are having the highest similarity
degree with drama films.).

{ 10 best results Results over 70% Results over 50% Results over 0% All results
film film name release|duration|genre original |directed |Truth
year [in language|by Value
minutes

ne.l The Godfather 1972 |207 drama |english |Francis |1
Ford
Coppola

ne.2 El laberinto del fauno 2006 |107 drama spanish |Guillermo|l
del Toro

ne.3 Il buono, il brutto, il cattivo 1967 |141 adventure |italian Sergio |0.8
Leone

na.4 Casablanca 1946 |172 romance (english |Michael 0.7
Curtiz

ne.s Finding Nemo 2003 |112 comedy |english |Andrew |05
Stanton
and Lee
Unkrich

ne.6 Quien mato a Bambi? 2013 |89 comedy |spanish |Santi 0.5
Amodeo

ne.y Despicable Me 2010 |95 comedy |english |Pierre 0.5
Coffin
and Chris
Renaud

n=.g8 Despicable Me 2 2013 |98 comedy |english |Pierre 0.5
Coffin
and Chris
Renaud

Fig. 9. The 10 best results tap.

14 M.H. Deedar and S.Munoz Hernandez

We can see in the results (Fig. 9, it includes two films of genre ”drama” with a
degree 717, which indicates that all the films from the same genre (for example drama
and drama) are ”completely similar” to each other. The third best answer is the film
with the genre ”adventure” with a similarity degree ”70.8”, that indicates this film is
?very similar” to the drama film based on the relation assigned between them. The
fourth best answer is the romance” film with a degree ”0.7”, and the rest four movies
are with degree ”0.5” which are ”similar” to "drama” film. We can see that, with the
help of the similarity degree assigned to each film a user can easily conclude which film
is ”similar, very similar, and completely similar” to ”drama”.

4 Conclusions

We have presented a framework which is a flexible and fuzzy search engine for query-
ing over various data formats devoted on similarity relations. We provide details about
the syntax and semantics of the constructions for representing the real-world similar-
ity relations using fuzzy logic (Section 2). We have presented the details about the
implementation and the architecture of our system (Section 3) with a comprehensive
introduction about the steps for creating and modifying the criteria, and we have de-
scribed the querying structure of our framework and the results to justify our work.
The distinctive characteristics of our system in comparison to the existing ones are:
(1) we do not force the similarity relation to be reflexive, symmetric and transitive,
i.e., an equivalence relation. (2) the promising prototypes are devoted to minority data
formats as Prolog, but our framework provides the possibilities to the user to pose their
expressive (fuzzy) queries devoted to similarity relations over various conventional and
modern data formats. (3) our user-friendly interface that reduces that gap between
the database users and the logic programming users by allowing them to search their
crisp data in conventional formats flexibly and expressively without knowing about the
low-level syntax and semantics of the fuzzy relations. As a result, we obtain a fuzzy
search engine for querying over modern and conventional data formats devoted to the
similarity relations between the real-world concepts. We believe, our work contributes
to the advancement of intelligent search engines. Our current research is on allowing
users to personalize fuzzy criteria for their flexible searches over databases. so that ev-
ery user of our system will be able to pose queries and get the result based on his/her
personalized criteria.

References

1. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning
in Artificial Intelligence. John Wiley & Sons, Inc., New York, NY, USA (1995)

2. Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner.
In: International Conference on Fuzzy Systems (FUZZ-08). pp. 923-930. IEEE
Computer Society (2008)

3. Dubois, D., Prade, H.: Comparison of two fuzzy set-based logics: similarity logic
and possibilistic logic. In: Proceedings of 1995 IEEE Int. Fuzzy Systems, Inter-
national Joint Conference of the Fourth IEEE International Conference on Fuzzy
Systems and The Second International Fuzzy Engineering Symposium. vol. 3, pp.
1219-1226 (1995)

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.
20.

Allowing Users to Create S.R for their Flexible Searches over DBs 15

Esteva, F., Garcia, P., Godo, L., Ruspini, E.H., Valverde, L.: On similarity logic
and the generalized modus ponens. In: Proceedings of the Third IEEE Conference
on Computational Intelligence, Fuzzy Systems, IEEE World Congress on Compu-
tational Intelligence. vol. 2, pp. 1423-1427 (1994)

Godo, L., Rodriguez, R.O.: A fuzzy modal logic for similarity reasoning. In: Cai,
K.Y., Chen, G., Ying, M. (eds.) Fuzzy Logic And Soft Computing. Kluwer Aca-
demic (1999)

Guadarrama, S., Mufioz-Herndndez, S., Vaucheret, C.: Fuzzy prolog: a new ap-
proach using soft constraints propagation. Fuzzy Set. Syst. 144(1), 127-150 (2004)
Ishizuka, M., Kanai, N.: Prolog-elf incorporating fuzzy logic. In: Proceedings of the
9th international joint conference on Artificial intelligence. pp. 701-703. Morgan
Kaufmann Publishers Inc, San Francisco, CA, USA (1985)

Li, D., Liu, D.: A Fuzzy Prolog Database System. John Wiley & Sons, Inc., New
York, NY, USA (1990)

Lloyd, J.W.: Foundations of logic programming. Springer-Verlag, Berlin (1987),
Second edition

Medina, J., Ojeda-Aciego, M., Vojtas, P.: Similarity-based unification: a multi-
adjoint approach. Fuzzy Set. Syst. 146(1), 4362 (2004)

Medina, J., Ojeda-Aciego, M., Vojtds, P.: A multi-adjoint approach to similarity-
based unification. Electr. Notes Theor. Comput. Sci. 66, 70-85 (2002)

Morcillo, P.; Moreno, G.: Floper, a fuzzy logic programming environment for re-
search. In: Gij (ed.) Proceedings of VIII Jornadas sobre Programacion y Lenguajes
(PROLE’08). pp. 259-263 (10 2008)

Murtioz-Hernéndez, S., Pablos-Ceruelo, V., Strass, H.: Rfuzzy: Syntax, semantics
and implementation details of a simple and expressive fuzzy tool over prolog. Inf.
Sci. 181(10), 1951-1970 (2011)

Pablos-Ceruelo, V., Mufioz-Hernéndez, S.: Introducing priorities in rfuzzy: Syntax
and semantics. In: CMMSE 2011 : Proceedings of the 11th International Confer-
ence on Mathematical Methods in Science and Engineering. vol. 3, pp. 918-929.
Benidorm (Alicante), Spain (6 2011)

Pablos-Ceruelo, V., Mufioz-Herndndez, S.: Getting answers to fuzzy and flexible
searches by easy modeling of real-world knowledge. In: In IJCCI 2013 — Proceedings
of the 5th International Joint Conference on Computational Intelligence (2013)
The CLIP lab: ”The Ciao Prolog Development System”,
http://www.clip.dia.fi.upm.es/Software/Ciao

Vojtéds, P.: Fuzzy logic programming,. Fuzzy Set. Syst. 124(3), 361-370 (2001)
Wang, J.B., Xu, Z.Q., Wang, N.C.: A fuzzy logic with similarity. In: Proceedings
of the 2002 International Conference on Machine Learning and Cybernetics. vol. 3,
pp. 1178-1183 (2002)

Zadeh, L.A.: Fuzzy sets. Inf. and Control 8(3), 338-353 (1965)

Zadeh, L.A.: Calculus of fuzzy restrictions. In: Fuzzy Sets and Their Applications
to Cognitive and Decision Processes. pp. 1-39 (1974)

