Skip to main content

Diversity in Massively Multi-agent Systems: Concepts, Implementations, and Normal Accidents

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11422))

Abstract

Coordination for Transportation as a Service (TaaS) can be implemented on a spectrum, ranging from independent agents communicating exclusively through market exchanges to hybrid market/hierarchy approaches fixed hierarchical control systems. An overview of each approach is described and a detailed description of recent work in simulating a hybrid solution is presented. The use of diversity as a potential approach to reduce the impact of catastrophic Normal Accidents is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this paper, we focus only on the collective adaptation aspect for agents. Their normal execution can be handled using the technique presented in [8], which is compatible with the approach we are proposing.

  2. 2.

    For the interested reader, the prototype is available in its entirety on a GitHub repository https://github.com/das-fbk/CollectiveAdaptationEngine.

  3. 3.

    https://github.com/das-fbk/DeMOCAS.

  4. 4.

    https://www.nyse.com/.

References

  1. Stock Exchange. Oxford University Press, oed online edn. http://www.oed.com.proxy-bc.researchport.umd.edu/view/Entry/190617?rskey=9zzLVE&result=2

  2. Consumer spending on vehicles averaged 8427 in 2016, September 2017. https://www.bls.gov/opub/ted/2017/consumer-spending-on-vehicles-averaged-8427-in-2016.htm

  3. Table 1. Median usual weekly earnings of full-time wage and salary workers by sex, quarterly averages, seasonally adjusted, October 2018. https://www.bls.gov/news.release/wkyeng.t01.htm

  4. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: towards a general model for self-adaptive systems. In: Reddy, S., Drira, K. (eds.) WETICE, pp. 48–53. IEEE Computer Society (2012)

    Google Scholar 

  5. Andres Figliozzi, M., Mahmassani, H., Jaillet, P.: Framework for study of carrier strategies in auction-based transportation marketplace. Transp. Res. Rec. J. Transp. Res. Board 1854, 162–170 (2003)

    Article  Google Scholar 

  6. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A conceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_17

    Chapter  Google Scholar 

  7. Bucchiarone, A., Dulay, N., Lavygina, A., Marconi, A., Raik, H., Russo, A.: An approach for collective adaptation in socio-technical systems. In: IEEE SASO Workshops, pp. 43–48 (2015)

    Google Scholar 

  8. Bucchiarone, A., Mezzina, C.A., Pistore, M., Raik, H., Valetto, G.: Collective adaptation in process-based systems. In: SASO 2014, pp. 151–156 (2014)

    Google Scholar 

  9. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Design for adaptation of distributed service-based systems. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 383–393. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0_27

    Chapter  Google Scholar 

  10. Bucchiarone, A., De Sanctis, M., Marconi, A., Martinelli, A.: DeMOCAS: domain objects for service-based collective adaptive systems. In: Drira, K., et al. (eds.) ICSOC 2016. LNCS, vol. 10380, pp. 174–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68136-8_19

    Chapter  Google Scholar 

  11. C. Pinciroli et al.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. In: IROS, pp. 5027–5034 (2011)

    Google Scholar 

  12. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-based collaboration patterns for autonomic service ensembles. In: 2011 International Conference on Collaboration Technologies and Systems, CTS 2011, Philadelphia, Pennsylvania, USA, 23–27 May 2011, pp. 508–515 (2011)

    Google Scholar 

  13. Clearfield, C., Tilcsik, A.: Meltdown: Why Our Systems Fail and What We Can Do About It. Atlantic Books, Penguin Canada, 20 March 2018. https://books.google.it/books/about/Meltdown.html?id=46krDwAAQBAJ&redir_esc=y

  14. Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 1017–1023 (1996)

    Google Scholar 

  15. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)

    Article  Google Scholar 

  16. Far, B.H., Wanyama, T., Soueina, S.O.: A negotiation model for large scale multi-agent systems. In: Proceedings of the 2006 IEEE International Conference on Information Reuse and Integration, IRI - 2006: Heuristic Systems Engineering, Waikoloa, Hawaii, USA, 16–18 September 2006, pp. 589–594 (2006)

    Google Scholar 

  17. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing Paradigms. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89437-7_1

    Chapter  MATH  Google Scholar 

  18. IBM: An architectural blueprint for autonomic computing. Technical report, IBM (2006)

    Google Scholar 

  19. Jones, A.T., McLean, C.R.: A proposed hierarchical control model for automated manufacturing systems. J. Manuf. Syst. 5(1), 15–25 (1986)

    Article  Google Scholar 

  20. Kirilenko, A., Kyle, A.S., Samadi, M., Tuzun, T.: The flash crash: high-frequency trading in an electronic market. J. Finan. 72(3), 967–998 (2017)

    Article  Google Scholar 

  21. Levi, P., Kernbach, S.: Symbiotic-Robot Organisms: Reliability, Adaptability, Evolution, vol. 7. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11692-6

    Book  MATH  Google Scholar 

  22. Lima, D.: Uber caps prices ahead of Hurricane Irma’s arrival, September 2017. https://www.bizjournals.com/southflorida/news/2017/09/07/ride-hailing-service-caps-prices-ahead-of.html

  23. Marconi, A., Pistore, M., Traverso, P.: Automated composition of web services: the ASTRO approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)

    Google Scholar 

  24. Mihajlović, M., Popovic̀ N.: Fooling a neural network with common adversarial noise. In: 2018 19th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 293–296, May 2018. https://doi.org/10.1109/MELCON.2018.8379110

  25. Nandiraju, S., Regan, A.: Freight transportation electronic marketplaces: a survey of the industry and exploration of important research issues (2008)

    Google Scholar 

  26. Noothigattu, R., et al.: A voting-based system for ethical decision making. CoRR abs/1709.06692 (2017). http://arxiv.org/abs/1709.06692

  27. Perrow, C.: Normal Accidents: Living with High Risk Technologies-Updated Edition. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  28. Popov, S.: The tangle, p. 131 (2016)

    Google Scholar 

  29. Quintero, R., Barbera, T.: A real-time control system methodology for developing intelligent control systems. Technical report (1992)

    Google Scholar 

  30. Roth, J.: The application of the hierarchy system to on-line process control. J. Br. Inst. Radio Eng. 24(2), 117–125 (1962)

    Google Scholar 

  31. Saaty, T.L.: What is the analytic hierarchy process? In: Mitra, G., Greenberg, H.J., Lootsma, F.A., Rijkaert, M.J., Zimmermann, H.J. (eds.) Mathematical Models for Decision Support. NATO ASI Series, vol. 48, pp. 109–121. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-83555-1_5

    Chapter  Google Scholar 

  32. Singh, M.G., Drew, S.A., Coales, J.F.: Comparisons of practical hierarchical control methods for interconnected dynamical systems. Automatica 11(4), 331–350 (1975)

    Article  Google Scholar 

  33. Tesfatsion, L.: Agent-based computational economics: modeling economies as complex adaptive systems. Inf. Sci. 149(4), 262–268 (2003)

    Article  Google Scholar 

  34. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in self-adaptive systems. In: IEEE/ACM SEAMS 2011, pp. 202–207 (2011)

    Google Scholar 

  35. Wellman, M.P.: Market-oriented programming: some early lessons. In: Clearwater, S.H. (ed.) Market-Based Control: A Paradigm for Distributed Resource Allocation, pp. 74–95. World Scientific, Singapore (1996)

    Chapter  Google Scholar 

  36. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal specification of distributed self-adaptive systems. TAAS 7(1), 8 (2012)

    Article  Google Scholar 

  37. Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation systems. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2663–2668. IEEE (2016)

    Google Scholar 

  38. Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., Puviani, M.: On self-adaptation, self-expression, and self-awareness in autonomic service component ensembles. In: SASOW, pp. 108–113 (2011)

    Google Scholar 

  39. Zhong, C., DeLoach, S.A.: Runtime models for automatic reorganization of multi-robot systems. In: IEEE/ACM SEAMS 2011, pp. 20–29 (2011)

    Google Scholar 

Download references

Acknowledgments

We’d like to thank Aaron Dant of ASRC Federal for his contribution to the direction and development of the market section of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bucchiarone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feldman, P., Bucchiarone, A. (2019). Diversity in Massively Multi-agent Systems: Concepts, Implementations, and Normal Accidents. In: Lin, D., Ishida, T., Zambonelli, F., Noda, I. (eds) Massively Multi-Agent Systems II. MMAS 2018. Lecture Notes in Computer Science(), vol 11422. Springer, Cham. https://doi.org/10.1007/978-3-030-20937-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20937-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20936-0

  • Online ISBN: 978-3-030-20937-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics