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Abstract. Age-Related Macular Degeneration (AMD) is an asymptomatic
retinal disease which may result in loss of vision. There is limited access
to high-quality relevant retinal images and poor understanding of the fea-
tures defining sub-classes of this disease. Motivated by recent advances in
machine learning we specifically explore the potential of generative mod-
eling, using Generative Adversarial Networks (GANs) and style transfer-
ring, to facilitate clinical diagnosis and disease understanding by feature
extraction. We design an analytic pipeline which first generates synthetic
retinal images from clinical images; a subsequent verification step is ap-
plied. In the synthesizing step we merge GANs (DCGANs and WGANs
architectures) and style transferring for the image generation, whereas
the verified step controls the accuracy of the generated images. We find
that the generated images contain sufficient pathological details to facil-
itate ophthalmologists’ task of disease classification and in discovery of
disease relevant features. In particular, our system predicts the drusen
and geographic atrophy sub-classes of AMD. Furthermore, the perfor-
mance using CFP images for GANs outperforms the classification based
on using only the original clinical dataset. Our results are evaluated using
existing classifier of retinal diseases and class activated maps, supporting
the predictive power of the synthetic images and their utility for feature
extraction. Our code examples are available online. 6

1 Introduction

As a rule, it is challenging to automatically diagnose retinal diseases from im-
ages, partly because of the difficulty of acquiring public data with a sufficient

6 https://github.com/huckiyang/EyeNet-GANs
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number of annotated images due to concerns of personal privacy. Meanwhile,
different ophthalmologists may provide conflicting judgments about identical
images; therefore, it can be arduous to reach consensus about a diagnosis.Thus,
it is clear that a larger number of retinal images collected from a system with
provided unbiased feature detection would be beneficial for ophthalmologists
clinical practice.

Generative models, such as Generative Adversarial Networks [1] (GANs), and
style transferring [2] techniques, have achieved impressive results for generating
sharp and realistic images. Therefore, these two methods are used to synthesize
the disease images from healthy retinal images and diseased ones. Synthesized
images not only impose high-level symptom features to the original ones but help
ophthalmologists build the understanding of related diseases. The definition of
image synthesis in [3] is seen as an image reconstruction process coupled with
feature transformation. The synthesized part is responsible for inverting features
back to the color space and the feature transformation matches certain statistics
of a original image to a generated image [4].

We consider images with Age-Related Macular Degeneration (AMD) as an
asymptomatic retinal disease and the leading cause of irreversible visual loss
among the aged population. Despite the advances of therapeutics, there is still
no satisfactory treatment. It raises the issue that diagnosing AMD from its early
stage and having proper managing it properly are more important than ever. The
development of AMD is classified as several stages that can be discerned by two
explicit symptoms, drusen and Geographic Atrophy(GA). Drusen are one of the
earliest clinical indications of AMD, which appears as focal, with yellow excres-
cences deep in the retina with extra-cellular deposits located beneath the retinal
pigment, epithelium, and Bruchs membrane; the number, size and distribution
of these deposits is highly variable. GA, symptomatic of a more advanced stage
of AMD, is described as a well-demarcated area of decreased retinal thickness.
Such areas have relative changes in color compared to surroundings allowing an
increased visualization of the underlying choroidal vessels. The phenomenon is
that less intense and more diffuse hyperfluorescence in which pigment clumping
sometimes forms a microreticular pattern, is demonstrated [5] [6] [7]. To sum
up, two symptoms (drusen and GA) are established clinical hallmarks of AMD.
Drusen size and confluency have been historically associated with the progression
of AMD, which also contributes to the development of GA. Our chief objective
is to generate images equipped with a sufficient number of pathological features
to capture the two different stages of AMD.

The contribution of this paper consists of two parts. First,style transferring,
WGANs and DCGANs are used to build a new artificial neural network as the
framework for the generation of synthetic pathologically relevant but detailed
images. Second, after new images are obtained and diagnosed by ophthalmolo-
gists, we use Class Activation Maps (CAMs) [8] to locate the advanced features
within the generated images. Finally, the EyeNet [9] is used to classify generated
images according to the established labelling of diseases.
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The paper is organized into five sections. Following this introduction,in the
second section, we survey related work. In the third section, we present our an-
alytic pipeline, including an account of how we fuse DCGANs, WGANs, style
transferring, EyeNet, and CAMs. In the fourth section, we present and discuss
computational experimental results. In the last section, we summarize conclu-
sions and outline prospects the future work.

2 Related Work

Below, we survey previous work on GANs, from which we benefit, synthetic
image generation, and computational retinal disease methods.
2.1 GANs

Since the pioneering formulation of GANs [1], there have been numerous
studies of how to formulate the optimization problem of balancing on the one
hand the training of a generative network G producing realistic synthetic sam-
ples, and on the other, a discriminator network D that distinguishes between
real and synthetic (generated) data. We adopt an adversarial loss

minGmaxDLGANS = Ex∼pdata(x)
[logD(x)] + Ex∼pprior(z)

[log(1 −D(z))] (1)

Yet, a major issue has been the stability and convergence of training a GAN.
Recent work [10] demonstrated improved stability when using a Kantorovich-
Rubinstein metric, which we have adopted in our training of the GAN for retinal
images. Rapid advances have demonstrated that GANs generate realistic im-
ages, with a rich number of features. For example, GANs have been successfully
applied for face generation [11], indoor scene reconstruction [12] and person re-
identification [13]. Here we benefit from recent progress with GANs to generate
new synthetic retinal disease images using both Deep Convolutional Generative
Adversarial Networks (DCGANs) [14] and Wasserstein GANs (WGANs) [10].
These architectures utilize a convolutional decoder, and DCGAN enables the
employment of large GANs using Convolutional Neural Networks (CNNs), re-
sulting in stable training across various datasets. Finally, our use of WGANs
improves the stability of learning,thereby avoiding known challenges such as
model collapse [10].
2.2 Generation of Synthetic Images

Recently, researchers have used convolutional neural networks to generate
images [15] with different given style. The method makes use of a pre-trained
network to optimize the image and its features. However, this method operates as
a global optimization; therefore, generated image exhibit distortions and detailed
parts cannot be presented on the transferred images. Meeting this challenge,
recent work [2] accomplished realistic image generation and style transferring.
On the other hand, in [14], authors combined a convolutional neural network and
GANs to generate new images, thus mitigating the impact of a limited number
of features of pathological relevance in original images. While their work clearly
improved the state-of-the-art methods, the technique may generate poor image
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samples or fails to converge. To ensure convergence and quality of generated
images, we deploy a closed form solution for style transferring [16].
2.3 Computational Retinal Disease Methods

There is a challenge to build large high-quality medical databases despite
massive investment in, for example, data collection, labeling, and data augmen-
tation. Exceptions include the recently released ChestXray14 [17] dataset which
contains 112,120 frontal-view chest radiographs with up to 14 thoracic patholog-
ical labels. Yet, in contrast, for retinal research, the DRIVE dataset [18], which
contains only 40 retina images, has long been a standard. However, recently the
Retina Image Bank (RIB) [19], containing a large number of different kinds of
retinal images, is truly an enabler for the kind of work presented in our paper.
Despite this, we still need techniques to augment such databases due to various
challenges, such as the limited amount of annotation, thus effectively transform-
ing a small dataset with low diversity into one that approximates the underlying
data distribution. For example, in [20] and [21], GANs were used to generate
a variety of retinal images and targeting control (healthy) images. Using the
Retinal Image Bank, we aim to generate new retinal images that have a suffi-
cient number of pathological details so that we have abundant and useful retinal
images to train and build robust classifier. In [22], authors propose a method
that implements automated segmentation of retina to facilitate the detection
of disease. Article [9] uses the whole retinal images in[19] to train the classifier,
which can discern multiple diseases with the extraction of visual traits. Our work
depends on having a pre-trained network to test the quality of generated images
and uses CAMs to present symptoms identified by the classifier.

3 Methodology

In this section, we describe different methods in our proposed pipeline. For gen-
erative models, GANs and style transferring based networks are discussed. For
verification, we elaborate EyeNet and CAMs.
3.1 Style Transferring

The input contains two images: a content and a style image and pre-trained
CNNs; the output is the synthesized image. In our case, the content image means
the disease image with pathological details; the style image represents the healthy
retinal image. When it comes to the existing style transferring methods, even
though the style is changed, the content of the image can be seen in the new
image. Thus, we expect generated images with pathological details, so content
images are seen as disease images. For each image, the output from the CNNs
classifier obtains various level features from many convolutional layers. Gener-
ated images preserve the original semantic content from the content image but
look like a style image. For the content and the style part, loss functions that
are computed from the similarity of images from convolutional layers can be
defined; style transferring becomes an optimization problem when the optimal
image is obtained with the least loss. The pixels in the image can be computed
iteratively by gradient descent.
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3.2 DCGANs and WGANs for image generation
Although original GANs provide an intriguing algorithm with surprising re-

sults, the instability is what we concern about when it comes to medical applica-
tions, which requires precision and detailed images for diagnosis. To improve the
quality of generated images, we chose DCGANs and WGANs to establish our
generative model. In this part, with a random initialized parameter, we build
a generator of retinal diseases while the improving discriminator. For a specific
symptom, generated images contain similar optical traits. Furthermore, high
dimensional neural networks for computer vision sometimes materialize higher
forms of neglected visual features. Therefore, generated retinal images not only
become the aid of diagnosis and strategy to explore diseases, but also provide
diverse computer training data.
3.3 Class Activation Maps

The class activation maps (CAMs) in [8] provide a method that localizes fea-
tures on images. From localized features, the performance of the generated image
can be evaluated and observed. As discussed in Section 3.1, convolutional layers
of CNNs are used to extract the visual feature of images. Through this method,
not only the similarity of images is tested with high-level disease features, but a
series of pathological details is built.
3.4 EyeNet

Besides CAMs, EyeNet as proposed in [9] is used to evaluate the correctness
of generated images. In [9], the authors trained a network that classifies different
retinal diseases; 52 kinds of retinal diseases are labeled and classified. Proposed
methods [23] include three frameworks: U-net, SVM and ResNet50; predicton by
ResNet50 performs best. Therefore, ResNet50 is modified so that the generated
images also can be classified to make sure of their correctness.
3.5 Pipeline

We propose a pipeline structure in Fig. 1. Initially, with feature extraction
by style transferring and GANs, more images are generated. In order to verify
the correctness, CAMs and EyeNet are used to compute the high level visual
features and predict the diseases, respectively. Results from the CAMs present
pathological details. Moreover, generated images can be applied to feed to other
classifier to train the more accurate classifier. All researches benefits not only the
newly trained network, but also ophthalmologists. Original retinal images give
doctors an initial diagnosis, and the generated images provide them more clues.
CAMs help ophthalmologists judge accurately, and they can reach the consensus
with EyeNet. To sum up, our pipeline improves the efficiency and accuracy of
the medical system and contributes to researchers.

4 Experiments

In this section, we describe the implementation details and experiments we con-
duct to validate our proposed methods. Initially, the data collection and setup of
experiments are emphasized. And generating images by style transferring, GANs
are presented. Finally, generated images are diagnosed by doctors and EyeNet
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Fig. 1. Proposed pipeline to improve retinal diagnosis efficiency by combining GANs
and EyeNet to assist ophthalmologists and doctors. EyeNet is used to check the per-
formance. Finally, observation of similarities among some diseases are analyzed and
described.

is used to check the performance. Furthermore, observation of similarity among
some diseases are analyzed and described.

4.1 Dataset Collection

Experimental images come from the Retina Image Bank (RIB) [19]. Retinal
image collection contains three types of photography that are fluorescein angiog-
raphy(FA), optical coherence tomography (OCT) and color fundus photography
(CFP). FA are gray-scale images and CFP are colorful images. CFP and FA
imaging are reliable for whole fundus, and used as our dataset.

4.2 Setup

As discussed above, we use images with AMD for experiments. Images contain
CFP and FA type, and present the symptom of drusen and GA. All DNNs
were implemented in PyTorch, and we modified the publicly available PyTorch
code for the neural network algorithm. Details of various methods are described
later, respectively. The derivative of all generative models is sped in CUDA for
gradient-based optimization.

4.3 Style Transferring Neural Networks

Style transferring neural network in [16] was modified to generate new disease
images. This network adopts layers from ”conv1 1” to ”conv4 1” in pre-trained
VGG-19 [24] network for the encoder, whose weights are provided by ImageNet-
pretrained weights. What’s more, multi-level stylization strategy proposed in
[16] is applied to optimize the VGG features in different layers. Input images are
three CFP images and three FA images as style images shown in Fig. 2 and 5. Six
CFP images with three drusen and three GA images in Fig. 3 and Fig. 4. Also,
FA images are applied to generate new images in Fig. 6 and Fig. 7. For CFP
images, six images are shown in Fig. 3 and in Fig. 4. In Fig. 3, generated images
contain round, discrete yellow-white dots, which are the symptom of drusen.
In the same way, in Fig. 4, well-demarcated areas appear on the three images.
Therefore, style transferring can generate new retinal symptom images.

Furthermore, generated images from FA images are presented in Fig. 6 and
Fig. 7. Results in the images are nearly identical to the original images, because
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(a) (b) (c)

Fig. 2. Three CFP fundus images that are used to generate new images are seen as
style images.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Three CFP fundus images with symptom of drusen and corresponding gener-
ated images. (a), (b), (c) Original images. (d), (e), (f) Generated images.

original networks are applied to stylize color images. However, six generated
images contain more concise features than the original ones, which helps oph-
thalmologists make better judgments. Therefore, this style transferring networks
can fulfill edge sharpening and enhancement of contrast. No matter which kinds
of images are generated, advanced features in new disease images still exist. Fur-
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Three CFP fundus images with symptom of GA and corresponding generated
images. (a), (b), (c) Original images. (d), (e), (f) Generated images.

(a) (b) (c)

Fig. 5. Three AF fundus images that are used to generate new images are seen as style
images.

thermore, analyses of image performance by EyeNet and CAMs for prediction
are presented in a later section.

4.4 DCGANs and WGANs

In this section, DCGANs and WGANs are trained with thousands of CFP
and FA images that have symptoms of drusen and GA separately; both of the
models require four to six hours to train. Generated images have been diagnosed
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Three FA fundus images with symptom of drusen and corresponding generated
images. (a), (b), (c) Original images. (d), (e), (f) Generated images.

by ophthalmologists for verification. Images generated by DCGANs, which are
shown in Fig. 8, cannot be identified as a valid retinal image with symptom.
However, drusen and GA images generated by WGANs can be used by oph-
thalmologists to diagnose. In Fig. 4, generated drusen images are diagnosed as
insignificant of drusen but can be identified by EyeNet. As for generated GA
images in Fig. 4, irregularly shaped macular atrophy can be identified by an
ophthalmologist. Macular atrophy is a distinguishable trait of GA, which means
WGANs indeed learn the symptoms of drusen and GA from specific AMD and
generate new images. Thus, WGANs perform better than DCGANs because
of resolution. Structure of DCGANs limits the size of generated images to be
64x64, so some pathological details are lost. We choose WGANs for following
experiments.

4.5 EyeNet Results for prediction

EyeNet in [9] is trained to predict the accuracy of images to accomplish the
pipeline. Though ImageNet and our retinal dataset are much different, using
pre-trained weights on ImageNet rather than random ones has boosted testing
accuracy of any models with 5 to 15 percent. Besides, pre-trained models tend
to converge much faster than random initialized. The training images encompass
52 kinds of fundus images, which are randomly divided into three parts: 70%
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Three FA fundus images with symptom of GA and corresponding generated
images. (a), (b), (c) Original images. (d), (e), (f) Generated images.

for training, 10% for validation and 20% for testing. It is noted that synthe-
sized images are not used to train this network. The training lasts 400 epochs.
The first 200 epochs take a learning rate of 1e-4 and the second 200 take 1e-5.
Besides, we apply random data augmentation during training. In every epoch,
70% probability for a training sample is affinely transformed. After EyeNet is
trained, generated images are fed into it, and the average predicted probabilities
are shown in Table 1. Compared to drusen, The accuracy declines when it comes
to identifying generated geographic atrophy images. The lack of geographic at-
rophy images in the EyeNet dataset weaken the capability of the classifier to
discern traits about geographic atrophy. Despite of the setback, there is a ex-
citing exploration that the predictions are not randomly distributed but focus
on particular diseases, which is likely caused by the high-dimensional features
mentioned above.

4.6 Image Sample Size Effect

Generative models are data-driven and the performance highly depending on
the sample size. The EyeNet dataset we use contains 19496 retinal images with
1448 AMD images. In this section, We choose 338 drusen images as samples
to test the size effect of GANs. Experiments show the difficulty of synthesizing
high quality images rises along with the increase of the sample number. Fig. 10
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(a) (b)

Fig. 8. Drusen images generated by DCGANs.(a) CFP image. (b) FA image.

(a) (b)

(c) (d)

Fig. 9. Drusen and GA images generated by WGANs.(a) Generated drusen CFP image.
(b) Generated drusen FA image. (c) Generated drusen CFP image. (d) Generated GA
FA image.

shows accuracy of successfully predicting synthesized images, but AMD slightly
declines as the sample number increases. In general, the more samples used to
train a generative, the harder it is to extract specific visual features for generative
model, which requires images with similarity; this is difficult to achieve when it
comes to biological traits. On the other hand, prediction error focuses on some
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Table 1. Average accuracy classified by EyeNet.

Drusen-CFP Drusen-FA GA-CFP GA-FA

Real Images 0.442 0.368 0.166 0.128

WGANs 0.594 0.374 0.254 0.291

Style Transferring 0.376 0.657 0.139 0.231

Fig. 10. Size effect of image samples and probability of predicting other specific dis-
eases.

specific diseases, and the probability of predicting these diseases rises when the
sample number falls. The phenomenon implies that high dimensional features in
the retinal images exist. Furthermore, with more sample images, we can more
likely to detect the symptom. This is a pathological approach to reveal hidden
relations among diseases.

4.7 Pathological retinal diseases classification inspired by size effect of
GANs With higher quality images and thriving computer vision skills, visible
retinal disease symptoms can being detected and represented. Based on tra-
ditional classification, symptoms have pathological correlations among retinal
diseases for ophthalmologist to use in diagnoses, as shown in Fig. 11. However,
according to the discovery above, retinal diseases have hidden relation connected
by invisible features. With GANs, we can propose a method to improve current
classification. In this case, the classification could modified by the results of
GANs as shown in Fig. 12.

4.8 Neural Network Visualization for Retinal Images

Finally, we verified the hypothesis that vessel-based segmentation and con-
trast enhancement are two coherent features to decide the type of retinal diseases.
Using techniques of generating CAMs introduced in [8], we visualized feature
maps of the final convolutional layer of ResNet50 in Fig. 13. In our results, gen-
erated drusen images are well identified. However, generated GA images are not
focused on the exact location of the symptom, but they are close. As discussed
above, in the clinical diagnosis process, ”vessel patterns” and ”fundus structure”
are the most crucial features for identifying the symptoms of different diseases.
These types of features cover more than 80% of retinal diseases [27, 28].
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Choroidal 
Metastases 

Subretinal 
Fluid 

Postequatorial 
Region 

AMD

Drusen Geographic 
Atrophy 

Fig. 11. Clinical hierarchical relationship of AMD and Choroidal metastases from [25]
and [26]. Drusen increase a persons risk of developing AMD; Geographic atrophy (GA)
is an advanced form of age-related macular degeneration that can result in the progres-
sive and irreversible loss of retina. Subretinal fluid and equatorial retina are significant
features in choroidal metastases from clinical understanding.

AMD

AMD

Drusen

Choroidal 
Metastases 

Presumed Ocular  
Histoplasmosis
Syndrome

Geographic 
Atrophy 

Fig. 12. Pathological Classification referring to GANs results. As a visual represen-
tation learned by deep network, Drusen are correlated to AMD (58.3%), Choroidal
metastasis (5.12%), Presumed-ocular-histoplasmosis-syndrome (6.52%), and Pattern
dystrophy (2.57%).

5 Conclusions and Future Work

We have implemented style transferring, DCGANs and WGANs to generate dis-
ease images that are detailed to capture different stages of AMD. Symptoms
of images are drusen and GA; both FA and CFP images are generated. Images
from DCGANs are difficult to be identified due to limit of resolution. However,
images from style transferring and WGANs are easier to identify by ophthal-
mologists,and generated images preserve pathological details. EyeNet is used to
predict the disease label, and results of generated drusen images are similar to
original images. However, generated GA images are more distant compared to
original images, because of the small number of GA images used during training
EyeNet. This phenomenon shows that generated new images can be fed into
the classifier to improve it. Also, CAMs are useful for extracting label-specific
features. In Fig. 13(c),(f) and(i), warmer color parts are located in the well-
demarcated areas or spots, which represents disease features that are close to
those parts.

In this paper, only a small number of disease images are synthesized and
evaluated, so various images can be tested and enhanced further. Furthermore,
different kinds of skills like semantic segmentation can be merged into the original
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. Generated images and their CAMs. (a) Original drusen image (CFP). (b)
Generated image of (a) by WGANs. (c) CAM of (b). (d) Original GA image (CFP).
(e) Generated image of (d) by WGANs. (f) CAM of (e). (g) Original GA image (FA).
(h) Generated image of (g) by style trnasferring. (i) CAM of (g).

GANs framework. With better and diverse generated images, classifier can be
trained robustly and applied to predict the disease more precisely. Above all, a
re-trained network discovers hidden relationships and provides ophthalmologists
with useful disease features warranting further investigation.
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