Skip to main content

Retinal Detachment Screening with Ensembles of Neural Network Models

  • Conference paper
  • First Online:
Book cover Computer Vision – ACCV 2018 Workshops (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11367))

Included in the following conference series:

Abstract

Rhegmatogenous retinal detachment is an important condition that should be diagnosed early. A previous study showed that normal eyes and eyes with rhegmatogenous retinal detachment could be distinguished using pseudo-ocular fundus color images obtained with the Optos camera. However, no study has used pseudo-ocular fundus color images to distinguish eyes without retinal detachment (not necessarily normal) and those with rhegmatogenous retinal detachment. Furthermore, the previous study used a single neural network with only three layers. In the current study, we trained and validated an ensemble model of a deep neural networks involving ultra-wide-field pseudocolor images to distinguish non-retinal detachment eyes (not necessarily normal) and rhegmatogenous retinal detachment eyes. The study included 600 non-retinal detachment, 693 bullous rhegmatogenous retinal detachment, and 125 non-bullous rhegmatogenous retinal detachment images. The sensitivity and specificity of the ensemble model (five models) were 97.3% and 91.5%, respectively. In sum, this study demonstrated promising results for a screening system for rhegmatogenous retinal detachment with high sensitivity and relatively high specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.aao.org/eyenet/article/malpractice-risk-retinal-detachments

  2. Miki, D., Hida, T., Hotta, K., Shinoda, K., Hirakata, A.: Comparison of scleral buckling and vitrectomy for retinal detachment resulting from flap tears in superior quadrants. Jpn. J. Ophthalmol. 45, 187–191 (2001)

    Article  Google Scholar 

  3. Heussen, N., Feltgen, N., Walter, P., Hoerauf, H., Hilgers, R.D., Heimann, H., SPR Study Group: Scleral buckling versus primary vitrectomy in rhegmatogenous retinal detachment study (SPR Study): predictive factors for functional outcome. Study report no. 6. Graefes Arch. Clin. Exp. Ophthalmol. 249, 1129–1136 (2011)

    Google Scholar 

  4. Lean, J.S., Silicone Study Group, et al.: Vitrectomy with silicone oil or sulfur hexafluoride gas in eyes with severe proliferative vitreoretinopathy: results of a randomized clinical trial. Silicone Study Report 1. Arch. Ophthalmol. 110, 770–779 (1992)

    Google Scholar 

  5. Azen, S., Silicone Study Group, et al.: Vitrectomy with silicone oil or sulfur hexafluoride gas in eyes with severe proliferative vitreoretinopathy: results of a randomized clinical trial. Silicone Study Report 2. Arch. Ophthalmol. 110, 780–792 (1992)

    Google Scholar 

  6. Scott, I.U., Flynn Jr., H.W., Murray, T.G., Feuer, W.J., Perfluoron Study Group: Outcomes of surgery for retinal detachment associated with proliferative vitreoretinopathy using perfluoro-n-octane: a multicenter study. Am. J. Ophthalmol. 136, 454–463 (2003)

    Google Scholar 

  7. Machemer, R., Aaberg, T.M., Freeman, H.M., Irvine, A.R., Lean, J.S., Michels, R.M.: An updated classification of retinal detachment with proliferative vitreoretinopathy. Am. J. Ophthalmol. 112, 159–165 (1991)

    Article  Google Scholar 

  8. Hu, Z., Liu, Q., Paulus, Y.M.: New Frontiers in retinal imaging. Int. J. Ophthalmic Res. 2, 148–158 (2016)

    Article  Google Scholar 

  9. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)

    Article  Google Scholar 

  10. De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342 (2018)

    Article  Google Scholar 

  11. Burlina, P.M., et al.: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA ophthalmol. 135(11), 1170–1176 (2017)

    Article  Google Scholar 

  12. Burlina, P.M., Joshi, N., Pacheco, K.D., Freund, D.E., Kong, J., Bressler, N.M.: Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA ophthalmol. 136, 1359–1366 (2018)

    Article  Google Scholar 

  13. Ohsugi, H., Tabuchi, H., Enno, H., Ishitobi, N.: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment. Sci. Rep. 7, 9425 (2017)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Simonyan, K., Andrew, Z.: Very deep convolutional networks for large-scale image recognition. Preprint https://arxiv.org/pdf/1409.1556.pdf (2014)

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, vol. 1, p. 2 (2017)

    Google Scholar 

  18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  19. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)

    Google Scholar 

  20. Chollet, F.: Deep learning with depthwise separable convolutions. Preprint https://arxiv.org/pdf/1610.02357.pdf

  21. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS, vol. 2, p. 5 (2015)

    Google Scholar 

  24. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15825-4_10

    Chapter  Google Scholar 

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Netw. 12, 145–151 (1999)

    Article  Google Scholar 

  27. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(1/k2). Doklady AN USSR. 269, 543–547 (1983)

    Google Scholar 

  28. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 329–344. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_22

    Chapter  Google Scholar 

  29. Schisterman, E.F., Faraggi, D., Reiser, B., Hu, J.: Youden index and the optimal threshold for markers with mass at zero. Stat. Med. 27, 297–315 (2008)

    Article  MathSciNet  Google Scholar 

  30. Kang, H.K., Luff, A.J.: Management of retinal detachment: a guide for non-ophthalmologists. BMJ 336, 1235–1240 (2008)

    Article  Google Scholar 

  31. Grassmann, F., et al.: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125, 1410–1420 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Masumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masumoto, H., Tabuchi, H., Adachi, S., Nakakura, S., Ohsugi, H., Nagasato, D. (2019). Retinal Detachment Screening with Ensembles of Neural Network Models. In: Carneiro, G., You, S. (eds) Computer Vision – ACCV 2018 Workshops. ACCV 2018. Lecture Notes in Computer Science(), vol 11367. Springer, Cham. https://doi.org/10.1007/978-3-030-21074-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21074-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21073-1

  • Online ISBN: 978-3-030-21074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics