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Abstract. Automatic clinical diagnosis of retinal diseases has emerged
as a promising approach to facilitate discovery in areas with limited
access to specialists. Based on the fact that fundus structure and vascular
disorders are the main characteristics of retinal diseases, we propose a
novel visual-assisted diagnosis hybrid model mixing the support vector
machine (SVM) and deep neural networks (DNNs). Furthermore, we
present a new clinical retina labels collection sorted by the professional
ophthalmologist from the educational project Retina Image Bank, called
EyeNet, for ophthalmology incorporating 52 retina diseases classes. Using
EyeNet, our model achieves 90.40% diagnosis accuracy, and the model
performance is comparable to the professional ophthalmologists.

1 Introduction

Computational retinal disease methods [1, 2] has been investigated extensively
through different signal processing techniques. Retinal diseases are accessible to
machine learning techniques due to their visual nature in contrast to other com-
mon human diseases requiring invasive techniques for diagnosis or treatments.
Typically, the diagnosis accuracy of retinal diseases based on the clinical reti-
nal images is highly dependent on the practical experience of a physician or
ophthalmologist. However, training highly-skilled ophthalmologists usually take
years and the number of them, especially in the less-developed area, is still far
from enough. Therefore, developing an automatic retinal diseases detection sys-
tem is important, and it will broadly facilitate diagnostic accuracy of retinal
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diseases. Moreover, for remote rural areas, where there are even no ophthalmol-
ogists locally to screen retinal disease, the automatic retinal diseases detection
system also helps non-ophthalmologists find the patient of the retinal disease,
and further, refer them to the medical center for further treatment.

UNet PCA MultiSVM
Output the
name of

retinal diseaseContrast
Enhancement PCA MultiSVM

Voting

Fig. 1. This figure represents our proposed two-streams model. A raw retinal image as
an input of DNNs, U-Net, and as the other input to a contrast enhancement algorithm.
Then we pass the output of U-Net to two separated PCA processing. Finally, the output
of these two PCA modules is sent as inputs to the retina disease classifier, SVM, which
give the outcome of predicted retina disease.

The development of automatic diseases detection (ADD) [3] alleviates enor-
mous pressure from social healthcare systems. Retinal symptom analysis [4] is
one of the important ADD applications given that it offers a unique opportunity
to improve eye care on a global stage. The World Health Organization estimates
that age-related macular degeneration (AMD) and Diabetic Retinopathy, which
are two typical retinal diseases, are expected to affect over 500 million people
worldwide by 2020 [5].

Moreover, the increasing number of cases of diabetic retinopathy globally
requires extending efforts in developing visual tools to assist in the analytic of
the series of retinal disease. These decision support systems for retinal ADD,
as [6] for non-proliferative diabetic retinopathy have been improved from recent
machine learning success on the high dimensional images processing by featur-
ing details on the blood vessel. [7] demonstrated an automated technique for
the segmentation of the blood vessels by tracking the center of the vessels on
Kalman Filter. However, these pattern recognition based classification still rely
on hand-crafted features and only specify for evaluating single retinal symptom.
Despite extensive efforts using wavelet signal processing, retinal ADD remains a
viable target for improved machine learning techniques applicable for point-of-
care (POC) medical diagnosis and treatment in the aging society [8].

To the best of our knowledge, the amount of clinical retinal images are
less compared to other cell imaging data, such as blood cell and a cancer cell.
However, a vanilla deep learning based diseases diagnosis system requires large
amounts of data. Therefore, we propose a novel visual-assisted diagnosis algo-
rithm which is based on an integration of the support vector machine and deep
neural networks. The primary goal of this work is to automatically classify 52
specific retinal diseases for human beings with the reliable clinical-assisted ability
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on the intelligent medicine approaches. To foster the long-term visual analytics
research, we also present a visual clinical label collection, EyeNet, including sev-
eral crucial symptoms as AMD, DR, uveitis, BRVO, BRAO.

Contributions.

– We design a novel two-streams-based algorithm on the support vector ma-
chine and deep neural networks to facilitate medical diagnosis of retinal
diseases.

– We present a new clinical labels collection, EyeNet, for Ophthalmology with
52 retina diseases classes as a crucial aid to the ophthalmologist and medical
informatics community.

– Finally, we visualize the learned features inside the DNNs model by heat
maps. The visualization helps in understanding the medical comprehensibil-
ity inside our DNNs model.

2 Related Work

In this section, we review some works related to our proposed method. We di-
vide the related works into three parts including medical dataset comparison,
dimension reduction by feature extraction, and image segmentation by neural
networks.
2.1 Medical Dataset Comparison

Large-scale datasets help the performance of deep learning algorithms com-
parable to human-level on the tasks of speech recognition [9], image classification
and recognition [10], and question answering [11–15]. In the medical community,
large scale medical datasets also help algorithms achieve expert-level perfor-
mance on detection of skin cancer [16], diabetic retinopathy [17], heart arrhyth-
mias [18], pneumonia [19], brain hemorrhage [20], lymph node metastases [21],
and hip fractures [22].

Recently, the number of openly available medical datasets is growing. In
Table 1, we try to provide a summary of the publicly available medical image
datasets related to ours. According to Table 1, we notice that the recently re-
leased ChestXray14 [23] is the largest medical dataset containing 112,120 frontal-
view chest radiographs with up to 14 thoracic pathology labels. Moreover, the
smallest medical dataset is DRIVE [24] containing 40 retina images. Regarding
the openly available musculoskeletal radiograph databases, the Stanford Pro-
gram for Artificial Intelligence in Medicine and Imaging has a medical dataset
containing pediatric hand radiographs annotated with skeletal age (AIMI). The
Digital Hand Atlas [25] includes the left-hand radiographs which are from chil-
dren of various ages labeled with radiologist readings of bone age. Then, our
proposed EyeNet contains 52 classes of diseases and 1747 images.
2.2 Dimension Reduction by Feature Extraction

Feature extraction is a method to make the task of pattern classification or
recognition easier. In image processing and pattern recognition, feature extrac-
tion is one of the special forms of dimensionality reduction [28] in some sense.



4 C.-H. Huck Yang et al.

Name of Dataset Study Type Label Number of Images
EyeNet Retina Labels mining of Retinal Diseases 1747
DRIVE [24] Retina Retinal Vessel Segmentation 40
MURA [26] Musculoskeletal (Upper Extremity) Abnormality 40,561

Digital Hand Atlas [25] Musculoskeletal (Left Hand) Bone Age 1,390
ChestX-ray14 [23] Chest Multiple Pathologies 112,120
DDSM [27] Mammogram Breast Cancer 10,239

Table 1. Overview of available different types of medical label collection and image
datasets.

The purpose of feature extraction is to exploit the most relevant information
based on the original data and describe the information in a space with lower
dimensions. For example, typically the size of original medical image data, such
as functional magnetic resonance imaging (fMRI) scans, is very large and it
causes algorithms computationally inefficient. In this case, we will transform the
original data into a reduced representation set of features. That is, we exploit
a set of feature vectors to describe the original data and the process is called
image feature extraction. In [29], the authors mention that the representation
by extracted feature vectors should have a dimensionality that corresponds to
the intrinsic dimensionality of the original data. Then, the intrinsic dimension-
ality of data is the minimum number of parameters required to account for the
properties of the original data. Moreover, the authors of [30] claim that dimen-
sionality reduction mitigates the curse of dimensionality and the other undesired
properties of spaces with high dimensions. The dimensionality reduction by fea-
ture extraction method has been used in many different application fields such
as document verification [31], character recognition [32], extracting information
from sentences [14, 33, 13], machine translation [34, 35] and so on.
2.3 Image Segmentation by Neural Networks

Typically, researchers exploit the convolutional neural networks to do image
classification tasks with a single class output label. However, in the biomedical
image processing tasks, the output should contain localization. That is to say, a
class label is assigned to each pixel. Furthermore, thousands of images in training
set are typically beyond reach in the biomedical tasks. Therefore, the authors of
[36] train a neural networks model, with sliding-window, to predict the output
class label of each pixel by providing a sub-region, small patch, around that pixel
as input.

In [36], we know that the neural network model can do localization and
the number of training data, in the sense of patches, is much larger than the
training images. Apparently, [36] has two drawbacks. First, there exists some
trade-off between the use of context and localization accuracy. Then, since the
model runs separately for each small patch and there is much redundancy due
to overlapping patches, it is not efficient in the sense of computational speed.
Recently, the authors of [37, 38] have proposed an approach which can do the
good localization and use of context at the same time.

In the U-Net paper [39], the authors build upon an even more elegant neural
network architecture, the so-called fully convolutional network [40]. The authors
modify the architecture such that it works with very few training images and
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produces even more accurate image segmentation. The main idea of [40] is to
supplement a usual contracting neural network by the successive layers. Then,
the authors exploit upsampling operators to replace pooling operators, so the
resolution of output is enhanced by these layers. In order to do localization, the
authors combine the upsampled output and high-resolution features from the
contracting path. Furthermore, a successive convolutional layer learns to assem-
ble a more accurate output based on this information. Due to the advantages of
U-Net mentioned above, we modify and incorporate the U-Net to our proposed
method.

Fig. 2. The figure shows the result of U-Net effects on (a), unseen eyeball clinical images
with different morphological shapes. (b) is the ground truth and (c) is the generated
result of vessel-subtracted U-Net. Based on (b) and (c), we discover that the results
are highly similar to the ground truth.

3 Methodology

In this section, we present the workflow of our proposed model, referring to
Figure 1.
3.1 U-Net

DNNs has greatly boosted the performance of image classification due to its
power of image feature learning [41]. The active retinal disease is characterized
by exudates around retinal vessels resulting in cuffing of the affected vessels [42].
However, ophthalmology images from clinical microscopy are often overlayed
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with white sheathing and minor features. Segmentation of retinal images has
been investigated as a critical [43] visual-aid technique for ophthalmologists. U-
Net [39] is a functional DNNs, especially for segmentation. Here, we proposed
a modified version of U-Net by reducing the copy and crop processes with a
factor of two. The adjustment could speed up the training process and have
been verified as an adequate semantic effect on small size images. We use cross-
entropy for evaluating the training processes as:

E =
∑
x∈Ω

w(x)log(pl(x)) (1)

where pl is the approximated maximum function, and the weight map is then
computed as:

w(x) = wc(x) + w0 · exp(
−(dx1 + dx2)2

2σ2
) (2)

dx1 designates the distance to the border of the nearest edges and dx2 desig-
nates the distance to the border of the second nearest edges. LB score is shown
as [8]. We use the deep convolutional neural network (CNN) of two 3 × 3 con-
volutions. Each step followed by a rectified linear unit (ReLU) and a 2× 2 max
pooling operation with stride 2 for downsampling; a layer with an even x- and y-
size is selected for each operation. For the U-Net model, we use existing DRIVE
[24] dataset as the training segmentation mask. Then, we use Our proposed
model converges at the 44th epoch when the error rate of the model is lower
than 0.001. The Jaccard similarity of our U-Net model is 95.59% by validated
on a 20% test set among EyeNet shown in Figure 2. This model is robust and
feasible for different retinal symptoms as illustrated in Figure 3. The area under
ROC curve is 0.979033 and the area under the Precision-Recall curve is 0.910335.

3.2 Principal Component Analysis as Eigenface in the limit of Sparse
Data

λk =
1

M

M∑
n=1

(uTk Φn)2 (3)

Eigenface [44] is classical and high-efficient image recognition technique de-
rived from the covariance matrix of the probability distribution over the high-
dimensional vector space of face images. Even with a single training image, pre-
vious works [45, 46] of eigenface already established robust automatic classifica-
tion with confident accuracy (85.6%) by combined principal component analysis
(PCA) and SVM classifiers. As a biological feature, retinal images share similar
properties with the human face for a potential with eigenface recognition [47]
included finite semantic layout between facial features and ophthalmological fea-
tures [48]. The eigenface could be calculated [44] by maximizing the equivalent
(3), where Φn represent the face differ, uk is a chosen kth vector, λk is the kth
eigenvalue, and M is a number of the dimension space. In our experiment, we
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Fig. 3. This figure illustrates the qualitative results of contrast enhancement algorithm
from the original clinical images to the (b) histogram equalization (c) contrast-limited
adaptive histogram equalization.

select the kUNet = 40 and kRGB = 61 to generate a eigenface with highest
accuracy for the U-Net-stream and RGB-stream separately.
3.3 Support Vector Machine

Support Vector Machine is a machine learning technique for classification,
regression, and other learning tasks. Support vector classification (SVC) in SVM,
map data from an input space to a high-dimensional feature space, in which an
optimal separating hyperplane that maximizes the boundary margin between
the two classes is established. The hinge loss function is shown as:

1

n

[
n∑
i=1

max(0, 1− yi(w · xi − b))

]
+ λ ‖w‖2 (4)

Where the parameter λ determines the trade off between increasing the margin-
size and ensuring that the xi lies on the right side of the margin. We use radial
basis function (RBF) and polynomial kernel for SVC, which have been widely
discussed [49] as a kernel-based fast SVC for images.
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3.4 Contrast Enhancement
Contrast enhancement techniques play a vital role in image processing to

bring out the information that exists within a less dynamic range of that image.
As a major clinical feature, fundus [50, 51] structure is highly related [52] the im-
age contrast [53]. Here, we use histogram equalization for the contrast enhance-
ment in retinal images. Compare to the original images, images after histogram
equalization show the light color detail as lesions in Figure 3(b). Images after
contrast-limited adaptive histogram equalization (CLAHE) give further features
as areas of retinopathy in Figure 3(c).

4 Efforts on Retinal Dataset

Retina Image Bank (RIB) [54] is an international clinical project launched by
American Society of Retina Specialists in 2012, which allow retina specialists
and ophthalmic photographers around the world to share the existing clinical
cases online for medicine-educational proposes for patients and physicians in
developing countries lack training resource. Any researcher could join as a con-
tributor for dedicating the retinal images or as a visitor using the medical images
and label for non-commercial propose. With the recent success on dataset col-
lection, such as ImageNet [55], we believe that the effort of sorting and mining
the clinical labels from RIB is valuable. With a more developer-friendly informa-
tion pipeline, both Ophthalmology and Computer Vision community could go
further on the analytical researches on medical informatics. Our proposed label
collection, EyeNet is mainly based on the RIB and following the RIB’s using
guideline.

5 Experiments

In this section, we describe the implementation details and experiments we con-
ducted to validate our proposed method.
5.1 Label Collection

For experiments, the EyeNet is randomly divided into three parts: 70% for
training, 10% for validation and 20% for testing. All the training data have to
go through the PCA before SVM. All classification experiments are trained and
tested on the EyeNet.
5.2 Setup

The EyeNet has been processed to U-Net to generate a subset with a semantic
feature of the blood vessel. For the DNNs and Transfer Learning models, we
directly use the RGB images from the retinal dataset. EyeNet will be published
online after getting accepted. For the CLAHE processing, we use adapthisteq
function from the image toolbox in MATLAB.
5.3 Deep Convolutional Neural Networks

CNN has demonstrated extraordinary performance in visual recognition tasks
[55], and the state of the art is in a great many vision-related benchmarks and
challenges [56]. With little or no prior knowledge and human effort in feature
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(c) 

(a) 

(b) 

(1) (2) (3) (4) 

Fig. 4. We use figure (i, j), where i = a, b, c and j = 1, 2, 3, 4, to demonstrate that our
proposed method can capture the similar lesion areas as the ophthalmologist’s manual
annotations, i.e., the yellow sketches.

design, it yet provides a general and effective method solving variant vision tasks
in variant domains. This new development in computer vision has also shown
great potential for helping/replacing human judgment in vision problems like
medical imaging [16], which is the topic we try to address in this paper. In
this section, we introduce several baselines in multi-class image recognition and
compare their results on the EyeNet.

Baseline1-AlexNet

AlexNet [55] brought up a succinct network architecture, with 3 fully con-
nected layers, 5 convolutional layers, and the activation function is ReLU [57].

Baseline2-VGG

The authors of VGG [41] exploit the filters (3x3) repeatedly to replace the
large filters (5x5,7x7) in traditional architectures. By increasing depths of the
network, it achieved better results on ImageNet with fewer parameters.

Baseline3-ResNet

Residual Networks [58], one of the most popular neural networks today, utilize
skip connections or short-cuts to jump over some layers. With skip connections,
the network essentially collapses into a shallower network in the initial phase
and this makes it easier to be trained, and then it expands its layers as it learns
more of the feature space.

Baseline4-SqueezeNet
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Hybrid-Ratio RBF Polyn.
0% : 100% 0.8159 0.8391
40% : 60% 0.8371 0.8381
50% : 50% 0.9002 0.8632
60% : 40% 0.8881 0.9040
100% : 0% 0.8324 0.8241

Table 2. Accuracy comparison of the two-streams model with Radial basis function
(RBF) and polynomial kernel. We use the hybrid-ratio [61] of the mixed weighted
voting between two multi-SVCs trained from images over U-Net and CLAHE.

Model Pretrained Random Init.
AlexNet 0.7912 0.4837
VGG11 0.8802 0.7579
VGG13 0.8721 0.7123
ResNet18 0.8805 0.7250

SqueezeNet 0.8239 0.5625
Table 3. Accuracy comparison of three DNNs baselines on EyeNet.

In real world, medical imaging tasks usually require a small and effective
model to adapt to limited resources. As some deep neural networks cost several
hundred megabytes to store, SqueezeNet [59] adopting model compression tech-
niques has achieved the accuracy of AlexNet level with around 500 times smaller
models.

5.4 Transfer Learning

We use a transfer learning framework from the normalized ImageNet [55]
to the EyeNet for solving the small samples issue on the computational retinal
visual analytics. With sufficient and utilizable training classified model, Transfer
Learning resolves the challenge of Machine Learning in the limit of minimal
amount of training labels and it drastically reduces the data requirements. The
first few layers of DNNs learn features , similar to Gabor filters and color blobs,
and these features appear not to be specific to any particular task or dataset
and thus applicable to other datasets and tasks [60]. Our experiments show the
significant improvement after we apply the pretrained parameters on our deep
learning based models, referring to Table 3 and Table 4.

5.5 Two-Streams Results
All SVM has implemented in Matlab with libsvm [62] module. We separate

both the original retinal dataset and the subset to three parts included 70%
training set, 20% test set, and 10% validation set. By training two multiple-
classes SVM models on both original EyeNet and the subset, we implement a
weighted voting method to identify the candidate of retina symptom. We have
testified different weight ratio as Hybrid − Ratio, SVM model with {Images
over CLAHE: Image over U-Net }, with different accuracy at Table 2. We have
verified the model without over-fitting by the validation set via normalization
on the accuracy with 2̃.03% difference.

5.6 Deep Neural Networks Results

All DNNs are implemented in PyTorch. We use identical hyperparameters
for all models. The training lasts 400 epochs. The first 200 epochs take a learn-
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Model Pretrained Random Init.
AlexNet 0.7952 0.4892
VGG11 0.8726 0.7583
VGG13 0.8885 0.7588
ResNet18 0.8834 0.6741

SqueezeNet 0.8349 0.5721
Table 4. Accuracy comparison of three DNNs baselines on EyeNet.

ing rate of 1e-4 and the second 200 take 1e-5. Besides, we apply random data
augmentation during training. In every epoch, there is 70% probability for a
training sample to be affinely transformed by one of the operations in {flip, ro-
tate, transpose}×{random crop}. Though ImageNet and our Retinal Dataset
are much different, using weights pretrained on ImageNet rather than random
ones has boosted test accuracy of any models with 5 to 15 percentages, referring
to Table 3. Besides, pretrained models tend to converge much faster than ran-
dom initialized ones as suggested in Figure 4. The performance of DNNs on our
retinal dataset can greatly benefit from the knowledge of other domains.
5.7 Neuron Visualization for Medical Images

Importantly, we verified the hypothesis that vessel-based segmentation and
contrast enhancement are two coherent features to decide the type of retinal dis-
eases. Using techniques of generating class activation maps introduced by [63],
we visualized feature maps of the final convolution layer of ResNet18 (which is
one of our deep learning model baselines). We notice that the features learned by
deep learning models agree with our intuitions about developing the two-stream
machine learning model. In fact, in the clinical diagnosis process, ”vessel pat-
terns” and ”fundus structure” are also the two most crucial features to identify
the symptom of different diseases. These two types of features actually cover
more than 80% of retinal diseases [50, 51].

6 Conclusion and Future Work

In this work, we have designed a novel hybrid model for visual-assisted diagnosis
based on the SVM and U-Net. The performance of this model shows the higher
accuracy, 90.40%, over the other pre-trained DNNs models as an aid for oph-
thalmologists. Also, we propose the EyeNet to benefit the medical informatics
research community. Finally, since our dataset not only contains images but also
text information of the images, image captioning and Visual Question Answer-
ing [13–15] based on the retinal images are also the interesting future directions.
Our work may also help the remote rural area, where there are no ophthalmol-
ogists locally, to screen retinal disease without the help of ophthalmologists in
the future.
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