Skip to main content

Multimodal Deep Neural Networks Based Ensemble Learning for X-Ray Object Recognition

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 Workshops (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11367))

Included in the following conference series:

Abstract

X-ray object recognition is essential to reduce the workload of human inspectors regarding X-ray baggage screening and improve the throughput of X-ray screening. Traditionally, researchers focused on single-view or multiple views object recognition from only one type of pseudo X-ray image generated from X-ray energy data (e.g., dual-energy or mono-energy X-ray image). It is known that different types of X-ray images represent different object characteristics (e.g., material or density). Thus, effectively using different types of X-ray images as multiple modalities is promising to achieve more reliable recognition performance. In this paper, we explore different stage of ensemble approaches for X-ray object-recognition and propose an approach that exploits a classifier ensemble by using the multimodality information of X-ray images on a single-view object. We use a deep neural network to learn a good representation for each modality, which is used to train the base classifiers. To ensure high overall classification performance, the reliabilities of the base classifiers are estimated by taking the inherent features (e.g., color and shape) of an object in an X-ray image into consideration. We conducted experiments to evaluate the competitive performance of our method using a 15 classes dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michel, S.: Computer-based training increases efficiency in X-ray image interpretation by aviation security screeners. In: 41st Annual IEEE International Carnahan Conference on Security Technology, Ottawa, ON, Canada, pp. 201–206 (2007)

    Google Scholar 

  2. Bastan, M., Byeon, W., Breuel, T.M.: Object recognition in multi-view dual energy X-ray images. In: British Machine Vision Conference (BMVC) (2013)

    Google Scholar 

  3. Mery, D.: Active X-ray testing of complex objects. Insight Non Destruct. Testing Cond. Monit. 54(1), 28–35 (2012)

    Article  Google Scholar 

  4. Mery, D.: Inspection of complex objects using multiple-X-ray views. IEEE/ASME Trans. Mechatron. 20(1), 338–347 (2015)

    Article  Google Scholar 

  5. Mery, D.: X-ray testing: The state of the art. J. Departement Comput. Sci.-Pontificia Univ. Catolica de Chile Av. Vicuna Mackenna. Santiago de Chile 18(9), 1–12 (2013)

    Google Scholar 

  6. Uroukov, I., Speller, R.: A preliminary approach to intelligent X-ray imaging for baggage inspection at airports. Signal Process. Res. 4, 1–11 (2015)

    Article  Google Scholar 

  7. Mery, D., Riffo, V., Zuccar, I., Pieringer, C.: Automated X-ray object recognition using an efficient search algorithm in multiple views. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 368–374, June 2013

    Google Scholar 

  8. Turcsány, D., Mouton, A., Breckon, T.P.: Improving feature-based object recognition for X-ray baggage security screening using primed visualwords. In: IEEE International Conference on Industrial Technology (ICIT), pp. 1140–1145 (2013)

    Google Scholar 

  9. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  10. Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 13, 2203–2215 (2018)

    Article  Google Scholar 

  11. Mery, D., Svec, E., Arias, M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision techniques for X-ray testing in baggage inspection. IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017)

    Article  Google Scholar 

  12. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  14. Mery, D., et al.: GDXray: the database of X-ray images for nondestructive testing. J. Nondestr. Eval. 34(4), 1–12 (2015)

    Article  Google Scholar 

  15. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Getoor, L., Scheffer, T. (eds.) ICML, pp. 689–696. Omnipress (2011)

    Google Scholar 

  16. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. J. Mach. Learn. Res. 15, 2949–2980 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 568–576. Curran Associates Inc. (2014)

    Google Scholar 

  18. Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M.A., Burgard, W.: Multimodal deep learning for robust RGB-D object recognition. CoRR, abs/1507.06821 (2015)

    Google Scholar 

  19. Zhu, H., Weibel, J.-B., Lu, S.: Discriminative multi-modal feature fusion for RGBD indoor scene recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2969–2976 (2016)

    Google Scholar 

  20. Als-Neielsen, J., McMorrow, D.: Elements of Modern X-ray Physics, 2edn. (2011)

    Google Scholar 

  21. Heitz, G., Chechik, G.: Object separation in X-ray image sets. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2093–2100, June 2010

    Google Scholar 

  22. Baştan, M., Yousefi, M.R., Breuel, T.M.: Visual words on baggage X-ray images. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6854, pp. 360–368. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23672-3_44

    Chapter  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  24. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

    Article  Google Scholar 

  25. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, abs/1512.03385 (2015)

    Google Scholar 

  27. Subrahmanyam, M., Maheshwari, R.P., Balasubramanian, R.: Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process. 92(6), 1467–1479 (2012)

    Article  Google Scholar 

  28. Rasmussen, C.E.: The infinite Gaussian mixture model. In: Advances in Neural Information Processing Systems 12, pp. 554–560. MIT Press (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, Q., Akira, N., Tong, B., Watanabe, Y., Matsubara, D., Murakami, T. (2019). Multimodal Deep Neural Networks Based Ensemble Learning for X-Ray Object Recognition. In: Carneiro, G., You, S. (eds) Computer Vision – ACCV 2018 Workshops. ACCV 2018. Lecture Notes in Computer Science(), vol 11367. Springer, Cham. https://doi.org/10.1007/978-3-030-21074-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21074-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21073-1

  • Online ISBN: 978-3-030-21074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics